Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems
Abstract
:1. Introduction
2. Methodology
2.1. Study Selection and Eligibility Criteria
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Data Overview
3.2. Environmental Conditions
3.3. Soil Properties
3.4. Crop Rotation
3.5. Crop Species
4. Conclusions
- Environmental and agronomic factors can lead to yield variability under conservation tillage systems.
- The impact of soil tillage and fertilisation management on crop yield depended on crop species.
- The observed yield reduction was mainly pronounced in dry sub-humid regions, particularly when using organic sources alone. However, under these conditions, using MO source with RT system matched CT in grain yield production.
- Although there was not so much variability under different soil properties, O fertilizers alone or combined with M fertilizers under RT system improved soil structure properties in coarse and medium soils, leading to considerable yield benefits.
- No negative impact was reported under RT using MO fertilizers in fine soils, represented by clay and silt clay soils in this study.
- Crop yields under RT were generally like that observed under CT practices under rotation cropping system using all fertilizer sources.
- Application of only organic nutrient sources (O) under RT system could produce enough grains for legume crops. Conversely, combining both inorganic and organic fertilizers (MO) benefits cereal crops in terms of grain yield production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sankar, G.R.M.; Sharma, K.L.; Reddy, K.S.; Pratibha, G.; Shinde, R.; Singh, S.R.; Nema, A.K.; Singh, R.P.; Rath, B.S.; Mishra, A.; et al. Efficient Tillage and Nutrient Management Practices for Sustainable Yields, Profitability and Energy use Efficiency for Rice-Based Cropping System in Different Soils and Agro-Climatic Conditions. Exp. Agric. 2013, 49, 161–178. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon in soils of arid ecosystems. Land Degrad. Dev. 2009, 20, 441–454. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.R.; Karlen, D.L.; Veum, K.S.; Moorman, T.B.; Cambardella, C.A. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 2020, 369, 114335. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Évid. 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, L.; Chen, Q.; Wen, X.; Liu, Y.; Han, J.; Liao, Y. Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron. Sustain. Dev. 2017, 37. [Google Scholar] [CrossRef]
- Sanaullah, M.; Usman, M.; Wakeel, A.; Alam Cheema, S.; Ashraf, I.; Farooq, M. Terrestrial ecosystem functioning affected by agricultural management systems: A review. Soil Tillage Res. 2019, 196, 104464. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 543–555. [Google Scholar] [CrossRef]
- FAO. Strategic Work of FAO for Sustainable Food and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; p. 28. [Google Scholar]
- Peigné, J.; Vian, J.-F.; Payet, V.; Saby, N. Soil fertility after 10 years of conservation tillage in organic farming. Soil Tillage Res. 2018, 175, 194–204. [Google Scholar] [CrossRef]
- Radicetti, E.; Campiglia, E.; Langeroodi, A.S.; Zsembeli, J.; Mendler-Drienyovszki, N.; Mancinelli, R. Soil carbon dioxide emissions in eggplants based on cover crop residue management. Nutr. Cycl. Agroecosystems 2020, 118, 39–55. [Google Scholar] [CrossRef]
- Mancinelli, R.; Marinari, S.; Allam, M.; Radicetti, E. Potential Role of Fertilizer Sources and Soil Tillage Practices to Mitigate Soil CO2 Emissions in Mediterranean Potato Production Systems. Sustainability 2020, 12, 8543. [Google Scholar] [CrossRef]
- Langeroodi, A.R.S.; Osipitan, O.A.; Radicetti, E. Benefits of sustainable management practices on mitigating greenhouse gas emissions in soybean crop (Glycine max). Sci. Total Environ. 2019, 660, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, R.; Zhang, Q.; Kong, X.; Sun, D. Reduced-tillage management enhances soil properties and crop yields in a alfalfa-corn rotation: Case study of the Songnen Plain, China. Sci. Rep. 2019, 9, 17064. [Google Scholar] [CrossRef] [PubMed]
- Elsoury, H.A.; Shouman, A.E.; Abdelrazek, S.; Elkony, H.M. Soil Enzymes and Microbial Activity as Influenced by Tillage and Fertilization in Wheat Production. Egypt. J. Soil Sci. 2015, 55, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2017, 217, 35–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B. Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Vaish, B.; Monika; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S.F.; Fenton, O.; Malina, G.; Szara, E. Restoration of soil quality using biochar and brown coal waste: A review. Sci. Total Environ. 2020, 722, 137852. [Google Scholar] [CrossRef]
- Wu, L.; Li, Z.; Zhao, F.; Zhao, B.; Phillip, F.O.; Feng, J.; Liu, H.; Yu, K. Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Front. Microbiol. 2021, 12, 628503. [Google Scholar] [CrossRef] [PubMed]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Pittelkow, C.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2014, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Vanlauwe, B.; Wendt, J.; Giller, K.; Corbeels, M.; Gerard, B.; Nolte, C. A fourth principle is required to define Conservation Agriculture in sub-Saharan Africa: The appropriate use of fertilizer to enhance crop productivity. Field Crop. Res. 2014, 155, 10–13. [Google Scholar] [CrossRef]
- Radicetti, E.; Campiglia, E.; Marucci, A.; Mancinelli, R. How winter cover crops and tillage intensities affect nitrogen availability in eggplant. Nutr. Cycl. Agroecosystems 2017, 108, 177–194. [Google Scholar] [CrossRef]
- Radicetti, E.; Mancinelli, R.; Moscetti, R.; Campiglia, E. Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil Tillage Res. 2016, 155, 329–338. [Google Scholar] [CrossRef]
- Lundy, M.E.; Pittelkow, C.; Linquist, B.A.; Liang, X.; van Groenigen, K.J.; Lee, J.; Six, J.; Venterea, R.T.; van Kessel, C. Nitrogen fertilization reduces yield declines following no-till adoption. Field Crop. Res. 2015, 183, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Gabrielle, B.; Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 2021, 8, 33. [Google Scholar] [CrossRef]
- Amegashie, B.K. Response of Maize Grain and Stover Yields to Tillage and Different Soil Fertility Management Practices in the Semi-Deciduous Forest Zone of Ghana. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2014. [Google Scholar]
- Blaise, D. Tillage and green manure effects on Bt transgenic cotton (Gossypium hirsutum L.) hybrid grown on rainfed Vertisols of central India. Soil Tillage Res. 2011, 114, 86–96. [Google Scholar] [CrossRef]
- Busari, M.A.; Salako, F.K. Effect of tillage, poultry manure and NPK fertilizer on soil chemical properties and maize yield on an Alfisol at Abeokuta, south-western Nigeria. Niger. J. Soil Sci. 2013, 23, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Choulwar, S.; Sankar, G.; Pendke, M.; Bhuibhar, B.; Mishra, P.; Chary, G.; Rao, C. Effect of tillage and nutrient management on productivity, soil fertility and profitability of cotton+soybean rotated with soybean+pigeonpea intercropping system under semi-arid Vertisols in India. Indian J. Soil Conserv. 2015, 43, 79–91. [Google Scholar]
- Kakabouki, I.P.; Roussis, I.; Hela, D.; Papastylianou, P.; Folina, A.; Bilalis, D. Root growth dynamics and productivity of quinoa (Chenopodium quinoa Willd.) in response to fertilization and soil tillage. Folia Hortic. 2019, 31, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Singh, V.; Nikam Kumari, K.; Kumar, S.; Nandan Thomas Abraham, R. Effect of conventional and minimum tillage, combine use of organic manure and synthetic based fertilizers with foliar spray of zinc sulphate for sustaining wheat productivity, quality, and status of soil fertility. Preprints 2020, 2020050096. [Google Scholar] [CrossRef]
- Kumar Yadav, A.; Singh, P.; Singh, K. Growth, yield and economics of sorghum [Sorghum bicolor (L.) Moench] affected by tillage and integrated nutrient management. Forage Res. 2012, 38, 40–43. [Google Scholar]
- Mohammadi, K.; Heidari, G.; Javaheri, M.; Rokhzadi, A.; Nezhad, M.T.K.; Sohrabi, Y.; Talebi, R. Fertilization affects the agronomic traits of high oleic sunflower hybrid in different tillage systems. Ind. Crop. Prod. 2013, 44, 446–451. [Google Scholar] [CrossRef]
- Montemurro, F. Different Nitrogen Fertilization Sources, Soil Tillage, and Crop Rotations in Winter Wheat: Effect on Yield, Quality, and Nitrogen Utilization. J. Plant. Nutr. 2009, 32, 1–18. [Google Scholar] [CrossRef]
- Nema, A.K.; Sankar, G.R.M.; Chauhan, S.P. Selection of Superior Tillage and Fertilizer Practices Based on Rainfall and Soil Moisture Effects on Pearl Millet Yield under Semiarid Inceptisols. J. Irrig. Drain. Eng. 2008, 134, 361–371. [Google Scholar] [CrossRef]
- Nouraein, M.; Kouchak-Khani, H.; Janmohammadi, M.; Mohamadzadeh, M.; Ion, V. The Effects of Tillage and Fertilizers on Growth Characteristics of Kabuli Chickpea Under Mediterranean Conditions. Acta Technol. Agric. 2020, 23, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Patil, S. Winter sorghum (Sorghum bicolor) productivity as influenced by tillage practices and nitrogen management in Vertisols of SAT, India. Soil Tillage Res. 2013, 126, 183–192. [Google Scholar] [CrossRef]
- Pradhan, S.N.; Ghosh, A.; Nema, A.; Ram, S.; Pal, Y. Changes in soil phosphorus forms in a long-term cropping system as influenced by fertilization and tillage. Arch. Agron. Soil Sci. 2020, 67, 822–835. [Google Scholar] [CrossRef]
- Ramachandrappa, B.K.; Sankar, G.R.M.; Satish, A.; Thimmegowda, M.N.; Dhanapal, G.N.; Kumar, N.I.; Shankar, M.A.; Rao, C.H.; Srinivasa, M.P.K. Efficient tillage and nitrogen practices for improving monetary returns and yield of finger millet and pigeonpea in semi-arid Alfisols. Indian J. Soil Conserv. 2017, 45, 157–167. [Google Scholar]
- Serme, I.; Ouattara, K.; Logah, V.; Taonda, J.; Pale, S.; Quansah, C.; Abaidoo, C. Impact of tillage and fertility management options on selected soil physical properties and sorghum yield. Int. J. Biol. Chem. Sci. 2015, 9, 1154. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.L.; Chandrika, D.S.; Lal, M.; Srinivas, K.; Mandal, U.K.; Indoria, A.K.; Reddy, B.S.; Rao, C.S.; Reddy, K.S.; Osman, M.; et al. Long term evaluation of reduced tillage and low-cost conjunctive nutrient management practices on productivity, Sustainability, Profitability and Energy Use Efficiency in Sorghum (Sorghum bicolor (L.) Moench)-Mung Bean (Vigna radiata (L.) Wilczek) System. Indian J. Dryland Agric. Res. Dev. 2015, 30, 50–57. [Google Scholar] [CrossRef]
- Sheoran, P.; Sardana, V.; Singh, S.; Bhushan, B.; Bawa, S.S.; Singh, C.B. Long-term effect of tillage and nitrogen sources on the sustainability and productivity of maize (Zea mays)-wheat (Triticum aestivum) cropping system under rainfed conditions. Indian J. Agric. Sci. 2009, 79, 259–263. [Google Scholar]
- Shumba, A.; Dunjana, N.; Nyamasoka, B.; Nyamugafata, P.; Madyiwa, S.; Nyamangara, J. Maize (Zea mays) yield and its relationship to soil properties under integrated fertility, mulch and tillage management in urban agriculture. S. Afr. J. Plant. Soil 2020, 37, 120–129. [Google Scholar] [CrossRef]
- Watts, D.B.; Torbert, H.A. Long-Term Tillage and Poultry Litter Impacts on Soybean and Corn Grain Yield. Agron. J. 2011, 103, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Weill, A.; McKyes, E.; Mehuys, G. Agronomic and economic feasibility of growing corn (Zea mays L.) with different levels of tillage and dairy manure in Quebec. Soil Tillage Res. 1989, 14, 311–325. [Google Scholar] [CrossRef]
- Luo, Y.; Hui, D.; Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metaphor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S. Forest plots: Trying to see the wood and the trees. BMJ 2001, 322, 1479–1480. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W.; Cheung, M. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 2010, 1, 112–125. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Farooq, M.; Flower, K.; Jabran, K.; Wahid, A.; Siddique, K.H. Crop yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 2011, 117, 172–183. [Google Scholar] [CrossRef]
- Díaz-Zorita, M.; Buschiazzo, D.E.; Peinemann, N. Soil Organic Matter and Wheat Productivity in the Semiarid Argentine Pampas. Agron. J. 1999, 91, 276–279. [Google Scholar] [CrossRef]
- Hijbeek, R.; van Ittersum, M.; Berge, H.T.; Gort, G.; Spiegel, H.; Whitmore, A. Do organic inputs matter—A meta-analysis of additional yield effects for arable crops in Europe. Plant. Soil 2016, 411, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, J.; Zhang, X.; Zhang, S.; Chen, Y. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau. PLoS ONE 2020, 15, e0238042. [Google Scholar] [CrossRef] [PubMed]
- Rusinamhodzi, L.; Corbeels, M.; van Wijk, M.; Rufino, M.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657. [Google Scholar] [CrossRef] [Green Version]
- Benlhabib, O.; Yazar, A.; Qadir, M.; Lourenço, E.; Jacobsen, S.-E. How Can We Improve Mediterranean Cropping Systems? J. Agron. Crop. Sci. 2014, 200, 325–332. [Google Scholar] [CrossRef]
- MacLaren, C.; Labuschagne, J.; Swanepoel, P. Tillage practices affect weeds differently in monoculture vs. crop rotation. Soil Tillage Res. 2020, 205, 104795. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isbell, S.A.; Bradley, B.A.; Morris, A.H.; Wallace, J.M.; Kaye, J.P. Nitrogen dynamics in grain cropping systems integrating multiple ecologically based management strategies. Ecosphere 2021, 12, e03380. [Google Scholar] [CrossRef]
- Raphael, J.P.; Calonego, J.C.; Milori, D.; Rosolem, C.A. Soil organic matter in crop rotations under no-till. Soil Tillage Res. 2016, 155, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Corbeels, M.; Sakyi, R.; Kühne, R.; Whitbread, A. Meta-Analysis of Crop Responses to Conservation Agriculture in Sub-Saharan Africa. CCAFS Report No. 12; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark; Available online: https://cgspace.cgiar.org/handle/10568/41933 (accessed on 28 August 2021).
- Pittelkow, C.; Linquist, B.A.; Lundy, M.E.; Liang, X.; van Groenigen, K.J.; Lee, J.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Mancinelli, R.; Muleo, R.; Marinari, S.; Radicetti, E. How Soil Ecological Intensification by Means of Cover Crops Affects Nitrogen Use Efficiency in Pepper Cultivation. Agriculture 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Mancinelli, R.; De Stefanis, E.; Pucciarmati, S.; Radicetti, E. The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crop. Res. 2015, 176, 34–44. [Google Scholar] [CrossRef]
- Wei, W.; Yan, Y.; Cao, J.; Christie, P.; Zhang, F.; Fan, M. Effects of combined application of organic amendments and fertilizers on crop yield and soil organic matter: An integrated analysis of long-term experiments. Agric. Ecosyst. Environ. 2016, 225, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Mkonda, M.Y.; He, X. Accumulation of SOC under organic and no-fertilizations, and its influence on crop yields in Tanzania’s semiarid zone. Ecosyst. Health Sustain. 2018, 4, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Papp, R.; Marinari, S.; Moscatelli, M.; Van Der Heijden, M.; Wittwer, R.; Campiglia, E.; Radicetti, E.; Mancinelli, R.; Fradgley, N.; Pearce, B.; et al. Short-term changes in soil biochemical properties as affected by subsidiary crop cultivation in four European pedo-climatic zones. Soil Tillage Res. 2018, 180, 126–136. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Six, J. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis. Plant. Soil 2010, 342, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.M.; Baranski, M.; Nobel de Lange, M.; Barberi, P.; Fliessbach, A.; Peigne, J.; Brock, C.; Mäder, P.; Casagrande, M.; Crowley, O.; et al. Effects of reduced tillage in organic farming on yield, weeds and soil carbon: Meta- analysis results from the TILMAN-ORG project. In Proceedings of the 4th ISOFAR Scientific Conference, Istanbul, Turkey, 13–15 October 2014; pp. 1163–1166. [Google Scholar]
ID | Authors | Country | Crop | Tillage Practice | Fertilisation | Organic Fertiliser | Mineral Fertiliser | Weed Management |
---|---|---|---|---|---|---|---|---|
[34] | Amegashie, 2014 | Ghana | Maize | CT, RT | M, O, MO | PM | U | CM |
[35] | Blaise, 2011 | India | Cotton | CT, RT1, RT2 | M, MO | LGM | U | MM |
[36] | Busari & Salako, 2013 | Nigeria | Maize | CT, MT | M, O, MO | PM | U | MM |
[37] | Choulwar et al., 2015 | India | Cotton | CT, RT1, RT2 | M, O, MO | FM + VC | U | MM + CM |
[18] | Elsoury et al., 2015 | Egypt | Wheat | CT, MT | M, O, MO | FM + C | U | -- |
[38] | Kakabouki et al., 2019 | Greece | Quinoa | CT, MT | M, O | SM | U | MM |
[39] | Kumar et al., 2020 | India | Wheat | CT, MT | M, MO | FM + VC | U | MM |
[40] | Kumar Yadav et al., 2012 | India | Sorghum | CT, RT, MT | M, MO | FM | U | -- |
[41] | Mohammadi et al., 2013 | Iran | Sunflower | CT, MT | M, O, MO | FM + C | U | -- |
[42] | Montemurro, 2009 | Italy | Wheat | CT, MT | M, O, MO | MSW | AS + AN | MM |
[43] | Nema et al., 2008 | India | Pearl Millet | CT, LT1, LT2 | M, O, MO | FM | U | MM |
[44] | Nouraein et al., 2020 | Iran | Chickpea | CT, RT | M, O | FM | U | MM |
[45] | Patil, 2013 | India | Sorghum | CT, RT1, RT2 | M, O, MO | FM | U | MM |
[46] | Pradhan et al., 2020 | India | Rice, Lentil | CT, MT | M, O, MO | FM | U | -- |
[47] | Ramachandrappa et al., 2017 | India | Finger millet, Pigeon pea | CT, RT, MT | M, O, MO | FM | U | MM + CM |
[1] | Sankar et al., 2013 | India | Rice, Lentil, Horse gram, Linseed | CT, LT1, LT2 | M, O, MO | FM | U | MM |
[48] | Serme et al., 2015 | Burkina Faso | Sorghum | CT, MT | M, O, MO | C | U | MM |
[49] | Sharma et al., 2015 | India | Sorghum, Mung bean | CT, RT | M, O, MO | C | U | MM |
[50] | Sheoran et al., 2009 | India | Maize, Wheat | CT, RT1, RT2 | M, O, MO | C | U | MM |
[51] | Shumba et al., 2020 | Zimbabwe | Maize | CT, RT | M, MO | CM | AN | MM |
[52] | Watts & Allen Torbert, 2011 | USA | Maize, Soybean | CT, RT | M, O | PM | AN | CM |
[53] | Weill et al., 1989 | Canada | Maize | CT, RT | M, O | CM | AN | CM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allam, M.; Radicetti, E.; Petroselli, V.; Mancinelli, R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture 2021, 11, 823. https://doi.org/10.3390/agriculture11090823
Allam M, Radicetti E, Petroselli V, Mancinelli R. Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture. 2021; 11(9):823. https://doi.org/10.3390/agriculture11090823
Chicago/Turabian StyleAllam, Mohamed, Emanuele Radicetti, Verdiana Petroselli, and Roberto Mancinelli. 2021. "Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems" Agriculture 11, no. 9: 823. https://doi.org/10.3390/agriculture11090823
APA StyleAllam, M., Radicetti, E., Petroselli, V., & Mancinelli, R. (2021). Meta-Analysis Approach to Assess the Effects of Soil Tillage and Fertilization Source under Different Cropping Systems. Agriculture, 11(9), 823. https://doi.org/10.3390/agriculture11090823