Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops
Abstract
:1. Introduction
2. Challenges to the Market of Agricultural Products
3. Emission of Ammonia from Agriculture
4. Fertiliser Consumption and Demand
5. Production of Biofuels vs. Ammonia Emissions
6. Evaluation of Ammonia Emissions from Mineral Fertilisers with Focus on Urea
7. Urea Production Capacity and Process Limitations
8. Urease Inhibitors—Mechanism of Action
9. Analysis of other Available Solutions
10. Summary
- more efficient use of resources through the transition to a clean and circular economy
- preventing loss of biodiversity and reducing the level of pollution
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name of Protease Inhibitor/Reference Boiling Point/ Flash Point | Composition | Proportion (%) | Classification of the Substance acc. to Regulation (WE) no. 1272/2008 (CLP) |
---|---|---|---|
NBPT 25% Yellow for Nexur [81] BP *- 189 °C (DMSO) FP **—87 (DMSO) | N-butyl thiophosphoric triamide (NBPT) | 24–26 | H318 Causes serious eye damage H361f Suspected of damaging fertility |
Dimethyl sulfonide | 70–80 | The substance is not classified as hazardous | |
Tartrazine | <0.5 | The substance is not classified as hazardous | |
LIMUS YELLOW [82] BP *—177 °C FP **—86 °C | Post-reaction mixture of compounds: N-butylthiophosphoric triamide (NBPT) and N-propylphosphorothioic triamide (NPPT) | 25 | H319 Causes serious eye irritation H302 Harmful if swallowed H317 May cause an allergic skin reaction H361f Suspected of damaging fertility H412 Harmful to aquatic life with long-lasting effects |
Polyethyleneimine | <25 | H318 Causes serious eye damage H302 Harmful if swallowed H317 May cause an allergic skin reaction H412 Harmful to aquatic life with long-lasting effects | |
Benzyl alcohol | <45 | H302 Harmful if swallowed H332 Harmful if inhaled H319 Causes serious eye irritation H312 Harmful in contact with skin | |
AGROTAIN® DRI-MAXX [83] | N-n-butyl thiophosphoric triamide (NBPT) | 40–70 | H318 Causes serious eye damage H361 Suspected of damaging fertility or the unborn child H361f Suspected of damaging fertility |
Component registered by the manufacturer | 30–60 | Component declared as safe by the manufacturer | |
Pigment registered by the manufacturer | <3 | Pigment declared as safe by the manufacturer | |
StabilureN [84] | N-n-butyl thiophosphoric triamide (NBPT) | 20–30 | H318 Causes serious eye damage H361 Suspected of damaging fertility or the unborn child |
References
- EMEP/EEA. Air Pollutant Emission Inventory Guidebook. Technical Guidance to Prepare National Emission Inventories—Updated 2019. EEA Report No 13/2019, ISSN 1977-8449. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/4-agriculture/3-d-crop-production-and/view (accessed on 21 January 2021).
- Guthrie, S.; Giles, S.; Dunkerley, F.; Tabaqchali, H.; Harshfield, A.; Ioppolo, B.; Manville, C. The impact of ammonia emissions from agriculture on biodiversity. Rand Eur. 2018. Available online: https://royalsociety.org/~/media/policy/projects/evidence-synthesis/Ammonia/Ammonia-report.pdf (accessed on 21 January 2021).
- Food and Agriculture Organization (FAO) of the United Nations. Current World Fertiliser Trends and Outlook to 2019. 2016. Available online: http://www.fao.org/documents/card/en/c/7d56821a-49ed-4e96-9420-d381fc33da22 (accessed on 21 January 2021).
- Food and Agriculture Organization (FAO). World Fertiliser Trends and Outlook to 2022. Rome. 2019. Available online: http://www.fao.org/3/ca6746en/ca6746en.pdf (accessed on 21 January 2021).
- Directive 2001/81/EC of the European Parliament and of the Council of 23 October 2001 on national emission ceilings for certain atmospheric pollutants. Off. J. L 2001, 309, 22–30.
- Directive 2003/35/EC of the European Parliament and of the Council of 26 May 2003 providing for public participation in respect of the drawing up of certain plans and programmers relating to the environment and amending with regard to public participation and access to justice Council Directives 85/337/EEC and 96/61/EC—Statement by the Commission. Off. J. L 2003, 156, 17–25.
- Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. Off. J. L 2016, 344, 1–31.
- Cantarella, H.; Otto, R.; Soares, J.R.; de Brito Silva, A.G. Agronomic efficiency of NBPT as a urease inhibitor. A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Saggar, S.; Singh, J.; Giltrap, D.L.; Zaman, M.; Luo, L.; Rollo, M.; Kim, D.-G.; Rys, G.; van der Weerden, T.J. Quantification of reductions in ammonia emissions from fertiliser urea and animal urine in grazed pastures with urease inhibitors for agriculture inventory, New Zealand as a case study. Sci. Total Environ. 2013, 465, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cui, X.; Liu, X.; Roelcke, M.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Chen, X.; Goulding, K.; Zhang, F. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Sci. Rep. 2017, 7, 43853. [Google Scholar] [CrossRef] [Green Version]
- International Fertilisers Association (IFA). Market Intelligence and Agriculture Services. Fertiliser Outlook 2020–2024. 2020. Available online: https://www.ifastat.org/market-outlooks9 (accessed on 21 January 2021).
- Fertilisers Europe. Towards Smart Agriculture 2019. Available online: https://www.fertiliserseurope.com/wp-content/uploads/2019/08/Nitrate_Smart_Agriculture_FINAL_version.pdf (accessed on 21 January 2021).
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. Options for Ammonia Mitigation Guidance from the UNECE Task Force on Reactive Nitrogen; Centre for Ecology and Hydrology (CEH): Edinburgh, UK, 2014; ISBN 978-1-906698-46-1. [Google Scholar]
- Tudge, S.J.; Purvis, A.; De Palma, A. The impacts of biofuel crops on local biodiversity: A global synthesis. Biodivers Conserv. 2021, 1–21. [Google Scholar] [CrossRef]
- Kurowska, K.; Marks-Bielska, R.; Bielski, S.; Kryszk, H.; Jasinskas, A. Food Security in the Context of Liquid Biofuels Production. Energies 2020, 13, 6247. [Google Scholar] [CrossRef]
- Elobeid, A.A.; Carriquiry, M.; Dumortier, J.; Rosas, J.F.; Mulik, K.; Fabiosa, J.F.; Hayes, D.J.; Babcock, B.A. Biofuel Expansion, Fertiliser Use, and GHG Emissions: Unintended Consequences of Mitigation Policies. Econ. Res. Int. 2013, 2013, 708604. [Google Scholar] [CrossRef] [Green Version]
- Food and Agricultural Organization (FAO). How to Feed the World in 2050 [Internet]. 2009. Available online: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 21 January 2021).
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050. The 2012 Revision. Global Perspective Studies. 2012, Team ESA Working Paper No. 12-03. Available online: http://www.fao.org/3/ap106e/ap106e.pdf (accessed on 21 January 2021).
- Sutton, M.A.; Reis, S.; Riddick, S.N.; Dragosits, U.; Nemitz, E.; Theobald, M.R.; Sim Tang, Y.; Braban, C.F.; Vieno, M.; Dore, A.J.; et al. Towards a climate-dependent paradigm of ammonia emission and deposition. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130166. [Google Scholar] [CrossRef] [PubMed]
- Sapek, A. Ammonia Emissions from Non-Agricultural Sources. Pol. J. Environ. Stud. 2013, 13, 95–110. [Google Scholar]
- Kanakidou, M.; Myriokefalitakis, S.; Daskalakis, N. Past, Present and Future Atmospheric Nitrogen Deposition. J. Atmos. Sci. 2016, 73, 2039–2047. [Google Scholar] [CrossRef] [Green Version]
- Pinder, R.W.; Adams, P.J.; Pandis, S.N.; Gilliland, A.B. Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs. J. Geophys. Res. 2006, 111, D16. [Google Scholar] [CrossRef] [Green Version]
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Kavanagh, I.; Fenton, O.; Healy, M.G.; Burchill, W.; Lanigan, G.J.; Krol, D.J. Mitigating ammonia and greenhouse gas emissions from stored cattle slurry using agricultural waste, commercially available products and a chemical acidifier. J. Clean. Prod. 2021, 294, 12625. [Google Scholar] [CrossRef]
- Vallero, D.A. Air Pollution Calculations Quantifying Pollutant Formation, Transport, Transformation, Fate and Risks; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 8; pp. 175–206. ISBN 9780128149355. [Google Scholar] [CrossRef]
- Erisman, J.W.; van Grinsven, H.; Leip, A.; Mosier, A. Nitrogen and biofuels; an overview of the current state of knowledge. Nutr. Cycl. Agroecosyst. 2009, 86, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Makowski, D. N2O increasing faster than expected. Nat. Clim. Chang. 2019, 9, 909–910. [Google Scholar] [CrossRef]
- Subramaniam, Y.; Masron, T.M.; Hadiyan, N.; NikAzman, N. The Impact of Biofuels on Food Security. International Economics, 2019. Available online: https://doi.org/10.1016/j.inteco.2019.10.003 (accessed on 21 January 2021). [CrossRef]
- Ghosh, P.; PatrickWesthoff, P.; Debnath, D. Biofuels, food security, and sustainability. In Biofuels, Bioenergy and Food Security: Technology, Institutions and Policies; Academic Press: Cambridge, MA, USA, 2019; pp. 211–229. [Google Scholar]
- Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 2008, 8, 389–395. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). Renewables 2019: Analysis and Forecasts to 2024; IAE: Paris, France, 2019. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Mladenović Drinić, S.; Vukadinović, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. [Google Scholar] [CrossRef]
- Gołębiewska, M.; Wróbel, E. The effect of nitrogen fertilisation on yielding of maize. Bull. Plant Breed. Acclim. Inst. 2009, 251, 121–136. [Google Scholar]
- Sapkota, A.; Shrestha, R.K.; Chalise, D. Response of Maize to the Soil Application of Nitrogen and Phosphorous Fertilisers. Int. J. Appl. Sci. Biotechnol. 2017, 5, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Han, J.Z.Z.; Yu, K.; Wu, S.; Li, Z.; Liu, S.; Niu, S.; Horwath, W.R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertiliser application: A refinement based on regional and crop-specific emission factors. Glob. Chang. Biol. 2020, 27, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Skoufogianni, E.; Solomou, A.; Charvalas, G.; Danalatos, N. Maize as Energy Crop. In Maize—Production and Use; Hossain, A., Ed.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/books/maize-production-and-use/maize-as-energy-cropIntechOpen (accessed on 21 January 2021). [CrossRef] [Green Version]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Productivity and energy balance of maize and sorghum grown for biogas in a large-area farm in Poland: An 11-year field experiment. Ind. Crop. Prod. 2020, 148, 112326. [Google Scholar] [CrossRef]
- Gallagher, M.E.; William Hockaday, W.C.; Masiello, C.A.; Snapp, S.; McSwiney, C.P.; Baldock, J.A. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops. Environ. Sci. Technol. 2011, 45, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Zabel, F.; Dessens, O.; Anandarajah, G. Land suitability for energy crops under scenarios of climate change and land-use. GCB Bioenergy 2020, 12, 648–665. [Google Scholar] [CrossRef]
- Fu, Q.; Abadie, M.; Blaud, A.; Carswell, A.; Misselbrook, T.H.; Clark, I.M.; Hirsh, P.H. Effects of urease and nitrification inhibitors on soil N, nitrifier abundance and activity in a sandy loam soil. Biol. Fertil. Soils 2020, 56, 185–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesołowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Sławiński, C.; Klimczyk, M.; Supryn, G.; Schimmelpfennig, L. New slow-release fertilisers—Economic, legal and practical aspects: A Review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosiera, A.; Luo, Y.; Chena, D. Ammonia volatilization from synthetic fertilisers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Rawluk, C.D.L.; Grant, C.A.; Racz, G.J. Ammonia volatilization from soils fertilised with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 2001, 81, 234–246. [Google Scholar] [CrossRef]
- Jadon, P.; Selladurai, R.; Yadav, S.S.; Coumar, V.M.; Dotaniya, M.L.; Singh, A.K.; Bhadouriya, J.; Kundu, S. Volatilization and leaching losses of nitrogen from different coated urea fertilisers. J. Soil Sci. Plant Nutr. 2018, 18, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.-G.; Zaman, M.; Tillman, R.W. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2012, 465, 173–195. [Google Scholar] [CrossRef]
- Luchibia, A.O.; Suter, H.; Hu, H.W. Responses of ureolytic and nitrifying microbes to urease and nitrification inhibitors in selected agricultural soils in Victoria, Australia. J. Soils Sediments 2020, 20, 1309–1322. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Misselbrook, T.H.; Arce, A.; Mingot, J.I.; Diez, J.A.; Vallejo, A. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agric. Ecosyst. Environ. 2008, 126, 243–249. [Google Scholar] [CrossRef]
- Nitrogen +Syngas. Nitrogen Project Listing, 2018, 352, March April. Available online: https://www.bcinsight.com/nitrogen_syngas.asp (accessed on 21 January 2021).
- European Commission. (BAT), Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals-Ammonia. Acids Fertil. 2007, 8, 352–364. [Google Scholar]
- Bock, B.R.; Kissel, D.E. Ammonia Volatization from Urea Fertilisers; National Fertiliser Development Center Tennessee Valley Authority Muscle Shoals: Tuscaloosa, AL, USA, 1988; pp. 51–76. ISBN 0-87077-003-9. [Google Scholar]
- Francisco, S.S.; Urrutia, O.; Martin, V.; Peristeropoulosa, A.; Garcia-Minaa, J.M. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilisers applied to different soil types and wheat straw mulching. J. Sci. Food Agric. 2011, 91, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Chikere, M.D.; Nkwonta, G.; Richards, K.; Cummins, E.; Hoganand, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Modolo, L.V.; da-Silva, C.J.; Brandão, D.S.; Chaves, I.S. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000sq. J. Adv. Res. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Engel, R.E.; Towey, B.D.; Gravens, E. Degradation of the Urease Inhibitor NBPT as Affected by Soil pH. Soil Sci. Soc. Am. J. 2015, 79, 1674–1683. [Google Scholar] [CrossRef]
- Engel, R.E.; Williams, E.; Wallander, R.; Hilmer, J. Apparent Persistence of N-(n-butyl) Thiophosphoric Triamide Is Greater in Alkaline Soils. Soil Sci. Soc. Am. J. 2013, 77, 1424–1429. [Google Scholar] [CrossRef]
- Gans, W.; Herbst, F.; Merbach, W. Nitrogen balance in the system plant—Soil after urea fertilisation combined with urease inhibitors. Plant Soil Environ. 2006, 52, 36–38. [Google Scholar]
- Li, Q.; Yang, A.; Wang, Z.; Roelcke, M.; Chen, X.; Zhang, F.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Liu, X. Effect of a new urease inhibitor on ammonia volatilization and nitrogen utilization in wheat in north and northwest China. Field Crop. Res. 2015, 175, 96–105. [Google Scholar] [CrossRef]
- Zuki, M.M.M.Z.; Jaafar, N.M.; Sakimin, S.Z.; Yusop, M.K. N-(n-Butyl) Thiophosphoric Triamide (NBPT)-Coated Urea (NCU) Improved Maize Growth and Nitrogen Use Efficiency (NUE) in Highly Weathered Tropical Soil. Sustainability 2020, 12, 8780. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Du, J.; He, A.; Yang, H.; Xue, G. Adding NBPT to urea increases N use efficiency of maize and decreases the abundance of N-cycling soil microbes under reduced fertiliser-N rate on the North China Plain. PLoS ONE 2020, 15, e0240925. [Google Scholar] [CrossRef]
- Zanin, L.; Tomasi, N.; Zamboni, A.; Varanini, Z.; Pinton, R. The Urease Inhibitor NBPT Negatively Affects DUR3-mediated Uptake and Assimilation of Urea in Maize Roots. Front. Plant Sci. 2015, 6, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanin, L.; Venuti, S.; Tomasi, N.; Zamboni, A.; De Brito Francisco, R.M.; Varanini, Z.; Pinton, R. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings. Front. Plant Sci. 2016, 7, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Wu, W.; Shah, F. Nitrogen fertilizer management for mitigating ammonia emission and increasing nitrogen use efficiencies by 15N stable isotopes in winter wheat. Sci. Total Environ. 2021, 790, 147587. [Google Scholar] [CrossRef] [PubMed]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 145483. [Google Scholar] [CrossRef]
- Huang, S.; Lv, W.; Bloszies, S.; Shi, Q.; Pan, X.; Zeng, Y. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crop. Res. 2016, 192, 118–125. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; Mac-Donald, J.D.; Pelster, D.E.; Bertrand, N. NH3 volatilization, soil concentration and soil pH following subsurface banding of urea at in-creasing rates. Can. J. Soil Sci. 2013, 93, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Siecińska, J.; Wiącek, D.; Przysucha, B.; Nosalewicz, A. Drought in acid soil in-creases aluminum toxicity especially of the Al-sensitive wheat. Environ. Exp. Bot. 2019, 165, 185–195. [Google Scholar] [CrossRef]
- Svane, S.; Sigurdarson, J.J.; Finkenwirth, F.; Eitinger, T.; Karring, H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020, 10, 8503. [Google Scholar] [CrossRef] [PubMed]
- Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical aspects, catalytic, and non-catalytic properties—A review. J. Adv. Res. 2018, 13, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Goos, R.J. Identification of Ammonium Thiosulfate as a Nitrification and Urease Inhibitor. Soil Sci. Soc. Am. J. 1985, 49, 232–235. [Google Scholar] [CrossRef]
- Goos, R.J. Ammonium thiosulfate as a urease inhibitor a suggested mechanism. In Proceedings of the Seventeen North Central Extension-Industry Soil Fertility Workshop, St. Louis, MO, USA, 28–29 October 1987. [Google Scholar]
- Safety Data Sheet ATS. Available online: https://www.finarchemicals.com/msds/Ammonium%20thiosulphate.pdf (accessed on 21 January 2021).
- Podleśny, A. Studies on Role of Sulphur at Forming of Mineral Management and Height and Quality of Chosen Crops Yield; Institute of Soil Science and Plant Cultivation, State Research Institute: Puławy, Poland, 2013; pp. 18–23. ISBN 978-83-7562-133-4. [Google Scholar]
- Goos, R.J. Evaluation of Two Products Recently Introduced as Nitrification Inhibitors. Commun. Soil Sci. Plant Anal. 2019, 50, 503–511. [Google Scholar] [CrossRef]
- Goos, R.J. Nitrogen fertiliser additives, which ones work. In Proceedings of the North Central Extension-Industry Soil Fertility Conference, Des Moines, IA, USA, 16–17 November 2011; Volume 27. [Google Scholar]
- Sullivan, D.M.; Havlin, J.L. Soil and Environmental Effects on Urease Inhibition by Ammonium Thiosulfate. Soil Sci. Soc. Am. J. 1992, 56, 950–956. [Google Scholar] [CrossRef]
- Grant, C.A. Use of NBPT and ammonium thiosulphate as urease inhibitors with varying surface placement of urea and urea ammonium nitrate in production of hard red spring wheat under reduced tillage management. Can. J. Plant Sci. 2014, 94, 329–335. [Google Scholar] [CrossRef]
- Margon, A.; Parente, G.; Piantanida, M.; Cantone, P.; Leita, L. Novel Investigation on Ammonium Thiosulphate (ATS) as an Inhibitor of Soil Urease and Nitrification. Int. J. Agric. Sci. 2015, 6, 1502–1512. [Google Scholar] [CrossRef] [Green Version]
- McCarty, G.W.; Bremner, J.M.; Krogmeier, M.J. Evaluation of ammonium thiosulfate as a soil urease inhibitor. Fertil. Res. 1990, 24, 135–139. [Google Scholar] [CrossRef]
- Gan, J.; Becker, L.O.; Ernst, F.F.; Hutchinson, C.; Knuteson, J.A.; Yates, S.R. Surface application of ammonium thiosulfate fertiliser to reduce volatilization of 1,3-dichloropropene from soil. Pest. Manag. Sci. 2000, 56, 264–270. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. Available online: https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf (accessed on 21 January 2021).
- Safety Data Sheet NBPT 25% Yellow for Nexur. Date of issue 20.02.2019, revision date 20.02.2019, version 1.0. Manufacturer’s leaflet supplied with the product.
- Safety Data Sheet Limus Yellow. Available online: https://www.raiffeisen.com/agrar_sdb/detail/20353 (accessed on 21 January 2021).
- Safety Data Sheet Agrotein Dri Maxx. Available online: https://kochfertilizer.com/sds (accessed on 21 January 2021).
- Data Sheet StabilureN. Available online: https://www.agra.cz/obj/files/2/sys_media_1431.pdf (accessed on 21 January 2021).
Process Parameter | Process Values |
---|---|
Pressure (bar) | 140–250 |
Temperature (°C) | 180–210 |
NH3/CO2 ratio (molar) | 2.8:1–4:1 |
Retention time (minutes) | 20–30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupka, M.; Nosalewicz, A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture 2021, 11, 822. https://doi.org/10.3390/agriculture11090822
Skorupka M, Nosalewicz A. Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture. 2021; 11(9):822. https://doi.org/10.3390/agriculture11090822
Chicago/Turabian StyleSkorupka, Maria, and Artur Nosalewicz. 2021. "Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops" Agriculture 11, no. 9: 822. https://doi.org/10.3390/agriculture11090822
APA StyleSkorupka, M., & Nosalewicz, A. (2021). Ammonia Volatilization from Fertilizer Urea—A New Challenge for Agriculture and Industry in View of Growing Global Demand for Food and Energy Crops. Agriculture, 11(9), 822. https://doi.org/10.3390/agriculture11090822