Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. FT-IR Spectral Measurements
2.3. Extraction and Analysis of Phenolic Compounds Using HPLC
2.4. Data Preprocessing and Multivariate Analysis
2.5. PLSR, PCR, and HLA/GO Model
3. Results and Discussion
3.1. Spectral Interpretation
3.2. HPLC Reference Analysis
3.3. PLSR, PCR, and HLA/GO Model for Phenolics Compounds Prediction
3.4. Beta Coefficients for the Developed PLSR Model
3.5. Validation of the Presence of Phenolic Compounds in the Mixed Powder Samples Using HPLC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Padayachee, B.; Baijnath, H. An overview of the medicinal importance of Moringaceae. J. Med. Plants Res. 2012, 6, 5831–5839. [Google Scholar]
- Fahey, J.W. Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1. Trees Life J. 2005, 1, 1–15. [Google Scholar]
- Iqbal, S.; Bhanger, M.I. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Compos. Anal. 2006, 19, 544–551. [Google Scholar] [CrossRef]
- Adebayo, I.A.; Arsad, H.; Samian, M.R. Total phenolics, total flavonoids, antioxidant capacities, and volatile compounds gas chromatography-mass spectrometry profiling of Moringa oleifera ripe seed polar fractions. Pharmacogn. Mag. 2018, 14, 191–194. [Google Scholar] [CrossRef]
- Stohs, S.J.; Hartman, M.J. Review of the Safety and Efficacy ofMoringa oleifera. Phytother. Res. 2015, 29, 796–804. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mbikay, M. Therapeutic Potential of Moringa oleifera Leaves in Chronic Hyperglycemia and Dyslipidemia: A Review. Front. Pharmacol. 2012, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Aberoumand, A.; Deokule, S.S. Comparison of Phenolic Compounds of Some Edible Plants of Iran and India. Pak. J. Nutr. 2008, 7, 582–585. [Google Scholar] [CrossRef] [Green Version]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef]
- Cheynier, V. Phenolic compounds: From plants to foods. Phytochem. Rev. 2012, 11, 153–177. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef]
- Maldini, M.; Maksoud, S.A.; Natella, F.; Montoro, P.; Petretto, G.L.; Foddai, M.; De Nicola, G.R.; Chessa, M.; Pintore, G. Moringa oleifera: Study of phenolics and glucosinolates by mass spectrometry. J. Mass Spectrom. 2014, 49, 900–910. [Google Scholar] [CrossRef]
- Seal, T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of North-Eastern region in India. J. Appl. Pharm. Sci. 2016, 6, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Clark, I.T. Gas Chromatographic Analysis of Phenols from Lignin. J. Chromatogr. Sci. 1968, 6, 53–55. [Google Scholar] [CrossRef]
- Joshi, R.; Joshi, R.; Mo, C.; Faqeerzada, M.A.; Amanah, H.Z.; Masithoh, R.E.; Kim, M.S.; Cho, B.-K. Raman Spectral Analysis for Quality Determination of Grignard Reagent. Appl. Sci. 2020, 10, 3545. [Google Scholar] [CrossRef]
- Amanah, H.Z.; Joshi, R.; Masithoh, R.E.; Choung, M.-G.; Kim, K.-H.; Kim, G.; Cho, B.-K. Nondestructive measurement of anthocyanin in intact soybean seed using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) spectroscopy. Infrared Phys. Technol. 2020, 111, 103477. [Google Scholar] [CrossRef]
- Joshi, R.; Cho, B.-K.; Lohumi, S.; Joshi, R.; Lee, J.; Lee, H.; Mo, C. Evaluation of benzene residue in edible oils using Fourier transform infrared (FTIR) spectroscopy. Korean J. Agric. Sci. 2019, 46, 257–271. [Google Scholar]
- Access, O. Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis. Korean J. Agric. Sci. 2021, 48, 299–310. [Google Scholar]
- Rébufa, C.; Pany, I.; Dupuy, N.; Bombarda, I. Infrared spectroscopy for the characterization and quality control of Moringa oleifera: A multivariate approach. Acta Hortic. 2017, 1158, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.S.T.; Melo, E.I.; Alves, V.N.; Coelho, N.M.M. Moringa oleifera Lam. seeds as a natural solid adsorbent for removal of AgI in aqueous solutions. J. Braz. Chem. Soc. 2010, 21, 1727–1732. [Google Scholar] [CrossRef]
- Yeo, H.J.; Baek, S.-A.; Sathasivam, R.; Kim, J.K.; Park, S.U. Metabolomic analysis reveals the interaction of primary and secondary metabolism in white, pale green, and green pak choi (Brassica rapa subsp. chinensis). Appl. Biol. Chem. 2021, 64, 1–16. [Google Scholar] [CrossRef]
- Storme-Paris, I.; Clarot, I.; Esposito, S.; Chaumeil, J.C.; Nicolas, A.; Brion, F.; Rieutord, A.; Chaminade, P. Near InfraRed Spectroscopy homogeneity evaluation of complex powder blends in a small-scale pharmaceutical preformulation process, a real-life application. Eur. J. Pharm. Biopharm. 2009, 72, 189–198. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lee, H.; Kim, M.S.; Mo, C.; Cho, B.-K. Hyperspectral Reflectance Imaging Technique for Visualization of Moisture Distribution in Cooked Chicken Breast. Sensors 2013, 13, 13289–13300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, R.; Lohumi, S.; Joshi, R.; Kim, M.S.; Qin, J.; Baek, I.; Cho, B.-K. Raman spectral analysis for non-invasive detection of external and internal parameters of fake eggs. Sens. Actuators B Chem. 2020, 303, 127243. [Google Scholar] [CrossRef]
- Shin, J.K.; Moon, S.H. Numerical Investigations in Choosing the Number of Principal Components in Principal Component Regression—CASE I.pdf. J. Stat. Theory Methods 1997, 8, 127–134. [Google Scholar]
- Goicoechea, H.C.; Olivieri, A.C. Wavelength selection by net analyte signals calculated with multivariate factor-based hybrid linear analysis (HLA). A theoretical and experimental comparison with partial least-squares (PLS). Analyst 1999, 124, 725–731. [Google Scholar] [CrossRef]
- Lorber, A. Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem. 1986, 58, 1167–1172. [Google Scholar] [CrossRef]
- Marsili, N.R.; Sobrero, M.S.; Goicoechea, H.C. Spectrophotometric determination of sorbic and benzoic acids in fruit juices by a net analyte signal-based method with selection of the wavelength range to avoid non-modelled interferences. Anal. Bioanal. Chem. 2003, 376, 126–133. [Google Scholar] [CrossRef]
- Telang, D.R.; Patil, A.T.; Pethe, A.M.; Tatode, A.A.; Anand, S.; Dave, V.S. Kaempferol-phospholipid complex: Formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. J. Excip. Food Chem. 2016, 7, 89–116. [Google Scholar]
- Priyanka, S.; Renu, S. Isolation and characterization of quercetin and kaempferol in vivo and in vitro from Pedalium murex. Int. Res. J. Pharm. 2012, 3, 184–187. [Google Scholar]
- Ilk, S.; Saglam, N.; Özgen, M. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif. Cells Nanomed. Biotechnol. 2017, 45, 907–916. [Google Scholar] [CrossRef] [Green Version]
- A Rodríguez-Rodríguez, W.; Colón, J.; Guzmán, R.; Rivera, H.; Santiago, M. Synthesis, characterization and electrochemical characterization of lead selenide sub-micron particles capped with a benzoate ligand and prepared at different temperatures. Mater. Res. Express 2014, 1, 035906. [Google Scholar] [CrossRef]
- Samsonowicz, M.; Kamińska, I.; Kalinowska, M.; Lewandowski, W. Alkali metal salts of rutin—Synthesis, spectroscopic (FT-IR, FT-Raman, UV-VIS), antioxidant and antimicrobial studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 926–938. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Chen, J.; Rahardja, S. Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1467–1471. [Google Scholar] [CrossRef]
- Johnson, J.; Mani, J.; Ashwath, N.; Naiker, M. Potential for Fourier transform infrared (FTIR) spectroscopy toward predicting antioxidant and phenolic contents in powdered plant matrices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 233, 118228. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Lin, M.; Yang, E.; Chen, X. A near-infrared reflectance spectroscopic method for the direct analysis of several fodder-related chemical components in drumstick (Moringa oleifera Lam.) leaves. Biosci. Biotechnol. Biochem. 2018, 82, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Okechukwu, V.U.; Eze, S.O.; Omokpariola, D.O.; Okereke, J.C. Evaluation of phytochemical constituents of Methanol extract of Moringa oleifera Lam. whole leaf by Gas Chromatography-Mass Spectrometry and Fourier transform infrared spectroscopy analysis. World News Nat. Sci. 2021, 37, 18–30. [Google Scholar]
- Makita, C.; Chimuka, L.; Steenkamp, P.; Cukrowska, E.; Madala, E. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. S. Afr. J. Bot. 2016, 105, 116–122. [Google Scholar] [CrossRef]
Moringa Varieties | Country of Heritage | Manufacturing Company |
---|---|---|
Variety (1) | India | MRM Nutrition, CA, USA |
Variety (2) | Zambia (Africa) | Dongbang International, Gyeonggi-do, South Korea |
Variety (3) | India | Green BIO Pam, Seoul, South Korea |
Variety (4) | South Korea | Agricultural corporation Purunsan, Seoul, South Korea |
Variety (5) | USA | Kuli Kuli Oakland, CA, USA |
Phenolic Compounds | Assignment | Absorption Frequency, ν (cm−1) |
---|---|---|
Kaempferol | Phenolic O-H stretching | 3427 & 3317 |
C-H stretching | 2954 & 2850b | |
C=O stretching | 1613 | |
Benzoic Acid | O-H stretching | 3427 & 3317 |
C=O aromatic stretching | 1500 | |
C=O stretching | 1670 | |
Rutin | O-H stretching | 3426s |
C=O stretching | 1656vs | |
Benzene ring skeleton | 1600s | |
C=C stretching vibration | 1505s |
Phenolic Compounds | Var. 1 | Var. 2 | Var. 3 | Var. 4 | Var. 5 |
---|---|---|---|---|---|
Benzoic acid | 75.44 ± 4.69 | 19.76 ± 4.10 | 82.31 ± 1.50 | 103.32 ± 5.07 | 36.22 ± 2.61 |
Rutin | 1537.30 ± 94.44 | 3758.31 ± 129.94 | 3535.31 ± 23.16 | 1950.17 ± 27.45 | 2027.80 ± 56.14 |
Kaempferol | 6.42 ± 1.56 | 10.79 ± 1.55 | 14.51 ± 1.54 | 13.04 ± 1.44 | 28.30 ± 4.71 |
total | 1619.16 ± 100.69 | 3788.86 ± 135.59 | 3632.13 ± 26.20 | 2066.53 ± 33.96 | 20927.32 ± 63.46 |
Technique (n = 1400) | Samples | Number of Samples (Calibration) | Number of Samples (Prediction) |
---|---|---|---|
FT-IR spectroscopy | Moringa Powder samples | 840 | 560 |
Model/Preprocessing | RMSEC (mg/g) | RMSEP (mg/g) | ||
---|---|---|---|---|
PLSR/Mean norm | 0.996 | 0.041 | 0.996 | 0.039 |
PLSR/MSC | 0.995 | 0.039 | 0.995 | 0.036 |
PLSR/SNV | 0.996 | 0.038 | 0.997 | 0.035 |
PLSR/SG-1 | 0.978 | 0.101 | 0.975 | 0.11 |
PLSR/SG-2 | 0.982 | 0.093 | 0.977 | 0.105 |
PLSR/Raw | 0.923 | 0.192 | 0.917 | 0.201 |
PCR/Mean Norm. | 0.932 | 0.18 | 0.926 | 0.18 |
PCR/Max Norm. | 0.967 | 0.125 | 0.963 | 0.134 |
PCR/MSC | 0.966 | 0.127 | 0.961 | 0.136 |
PCR/SNV | 0.966 | 0.127 | 0.961 | 0.136 |
PCR/SG-2 | 0.952 | 0.152 | 0.943 | 0.166 |
HLA/GO/Mean Norm. | 0.973 | 0.115 | 0.971 | 0.120 |
HLA/GO/Max Norm. | 0.969 | 0.122 | 0.967 | 0.128 |
HLA/GO/MSC | 0.972 | 0.116 | 0.970 | 0.121 |
HLA/GO/SNV | 0.972 | 0.117 | 0.970 | 0.122 |
HLA/GO/SG-2 | 0.8025 | 0.385 | 0.79 | 0.396 |
Phenolic Compounds | C-1 (1.95) | C-2 (2.50) | C-3 (3.10) | C-4 (3.70) | C-5 (4.42) | C-6 (2.51) | C-7 (2.95) | C-8 (3.40) | C-9 (3.82) | C-10 (4.20) | C-11 (2.44) | C-12 (2.90) | C-13 (3.30) | C-14 (3.80) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Benzoic acid | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.18 ± 0.07 | 0.12 ± 0.03 | 0.22 ± 0.08 | 0.16 ± 0.01 | 0.16 ± 0.00 | 0.14 ± 0.02 | 0.14 ± 0.02 | 0.19 ± 0.01 | 0.11 ± 0.00 | 0.14 ± 0.03 | 0.17 ± 0.02 | 0.20 ± 0.00 |
Rutin | 3.00 ± 0.54 | 3.12 ± 0.85 | 5.91 ± 3.39 | 3.41 ± 1.52 | 7.56 ± 3.38 | 2.94 ± 0.75 | 5.48 ± 0.05 | 4.86 ± 1.51 | 6.09 ± 1.07 | 7.29 ± 0.10 | 1.72 ± 0.4 | 3.49 ± 1.74 | 5.88 ± 1.10 | 7.40 ± 0.01 |
Kaempferol | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
Total | 4.81 ± 0.78 | 4.76 ± 1.24 | 8.47 ± 4.49 | 5.06 ± 2.15 | 10.68 ± 4.91 | 4.54 ± 1.09 | 8.08 ± 0.22 | 7.21 ± 2.10 | 8.94 ± 1.51 | 10.60 ± 0.07 | 2.83 ± 0.80 | 5.39 ± 2.60 | 8.62 ± 1.62 | 10.62 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, R.; Sathasivam, R.; Park, S.U.; Lee, H.; Kim, M.S.; Baek, I.; Cho, B.-K. Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture 2022, 12, 10. https://doi.org/10.3390/agriculture12010010
Joshi R, Sathasivam R, Park SU, Lee H, Kim MS, Baek I, Cho B-K. Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture. 2022; 12(1):10. https://doi.org/10.3390/agriculture12010010
Chicago/Turabian StyleJoshi, Rahul, Ramaraj Sathasivam, Sang Un Park, Hongseok Lee, Moon S. Kim, Insuck Baek, and Byoung-Kwan Cho. 2022. "Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder" Agriculture 12, no. 1: 10. https://doi.org/10.3390/agriculture12010010
APA StyleJoshi, R., Sathasivam, R., Park, S. U., Lee, H., Kim, M. S., Baek, I., & Cho, B. -K. (2022). Application of Fourier Transform Infrared Spectroscopy and Multivariate Analysis Methods for the Non-Destructive Evaluation of Phenolics Compounds in Moringa Powder. Agriculture, 12(1), 10. https://doi.org/10.3390/agriculture12010010