Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Materials
2.2. Cultivating Experimental Design
2.3. Sampling and Data Collection
2.3.1. Canopy Microclimate
2.3.2. Pest and Disease Survey
- 0—No lesion;
- 1—Lesions on any leaf except the top three leaves;
- 2—Lesions up to the third topmost leaf;
- 3—Lesions up to the second topmost leaf;
- 4—Lesions up to the flag leaf or panicle.
2.3.3. Grain Yield, Yield Components, Grain Quality, and Economic Income
2.4. Data Analysis
3. Results
3.1. Rice Canopy Microclimate
3.2. Rice Pest and Disease
3.3. Rice Yield and Yield Components
3.4. Rice Grain Quality
3.5. Correlation Analysis
3.6. Economic Analysis
4. Discussion
4.1. Canopy Microclimate Modifying
4.2. Pest and Disease Control
4.3. Yield and Yield Components Advantages
4.4. Grain Quality and Economic Incomes Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, C.; Qu, J.; He, L.; Yang, R.; Chen, Q.; Luo, S.; Cai, K. Improvement of yield, pest control and Si nutrition of rice by rice-water spinach intercropping. Field Crops Res. 2017, 208, 34–43. [Google Scholar] [CrossRef]
- Li, R.; Li, M.; Ashraf, U.; Liu, S.; Zhang, J. Exploring the relationships between yield and yield- related traits for rice varieties released in China from 1978 to 2017. Front. Plant Sci. 2019, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; He, H.; Luo, S.; Li, H. Effects of rice-water chestnut intercropping on rice sheath blight and rice blast diseases. Crop Prot. 2013, 43, 89–93. [Google Scholar] [CrossRef]
- Liang, K.; Yang, T.; Zhang, S.; Zhang, J.-E.; Luo, M.; Fu, L.; Zhao, B. Effects of intercropping rice and water spinach on net yields and pest control: An experiment in southern China. Int. J. Agric. Sustain. 2016, 14, 448–465. [Google Scholar] [CrossRef]
- Wang, J.; Lu, X.; Zhang, J.; Ouyang, Y.; Wei, G.; Xiong, Y. Rice intercropping with alligator flag (Thalia dealbata): A novel model to produce safe cereal grains while remediating cadmium contaminated paddy soil. J. Hazard. Mater. 2020, 394, 122505. [Google Scholar] [CrossRef] [PubMed]
- Cissé, M.; Vlek, P.L.G. Influence of urea on biological N2 fixation and N transfer from Azolla intercropped with rice. Plant Soil 2003, 250, 105–112. [Google Scholar] [CrossRef]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural biodiversity is essential for a sustainable improvement in food and nutrition security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S.-E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Feeding the world: Genetically modified crops versus agricultural biodiversity. Agron. Sustain. Dev. 2013, 33, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Hassen, A.; Talore, D.G.; Tesfamariam, E.H.; Friend, M.A.; Mpanza, T.D.E. Potential use of forage-legume intercropping technologies to adapt to climate-change impacts on mixed crop-livestock systems in Africa: A review. Reg. Environ. Chang. 2017, 17, 1713–1724. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Sanusi, R.; Zulkifli, R.; Tohiran, K.A.; Moslim, R.; Ashton-Butt, A.; Azhar, B. Alley-cropping system increases vegetation heterogeneity and moderates extreme microclimates in oil palm plantations. Agric. For. Meteorol. 2019, 276, 107632. [Google Scholar] [CrossRef]
- Ehret, M.; Graß, R.; Wachendorf, M. Productivity at the tree-crop interface of a young willow-grassland alley cropping system. Agrofor. Syst. 2018, 92, 71–83. [Google Scholar] [CrossRef]
- Moreira, S.L.; Pires, C.V.; Marcatti, G.E.; Santos, R.H.; Imbuzeiro, H.M.; Fernandes, R.B. Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agric. For. Meteorol. 2018, 256, 379–390. [Google Scholar] [CrossRef]
- Peng, X.; Thevathasan, N.V.; Gordon, A.M.; Mohammed, I.; Gao, P. Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercropping systems in Southern Ontario, Canada. PLoS ONE 2015, 10, e0129467. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Wang, L.; Liu, L.; Fu, Q.; Zhu, D. Nonchemical pest control in China rice: A review. Agron. Sustain. Dev. 2014, 34, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 2, 125–144. [Google Scholar]
- Xiao, Y.; Li, L.; Zhang, F. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil 2004, 262, 45–54. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, F.; Shah, Z.; Khan, M.J. Quality and crop yield potential of moderately degraded Alfisols under different nutrient inputs and cropping patterns. Pedosphere 2019, 29, 235–247. [Google Scholar] [CrossRef]
- Mthembu, B.E.; Everson, T.M.; Everson, C.S. Intercropping maize (Zea mays L.) with lablab (Lablab purpureus L.) for sustainable fodder production and quality in smallholder rural farming systems in South Africa. Agroecol. Sustain. Food Syst. 2017, 42, 362–382. [Google Scholar] [CrossRef]
- Rahman, M.; Khatun, S.; Ali, S.; Yasmin, S.; Kamruzzaman, M.; Rashid, M. Morpho-physiological diversity of root nodule rhizobia from mimosa (Mimosa pudica L.) and water mimosa (Neptunia oleracea L.). J. Bacteriol. Mycol. 2018, 5, 1061. [Google Scholar]
- Wahab, A.; Ismail, S.S.; Abidin, E.Z.; Praveena, S. Neptunia oleracea (water mimosa) as phytoremediation plant and the risk to human health: A review. Adv. Environ. Biol. 2014, 8, 187–194. [Google Scholar]
- Zhang, S.; Liang, K.; Zhang, Y.; Li, M.; Zhang, J. Effects of rice and water mimosa intercropping on crop yield, nitrogen uptake and soil nitrogen content. Ecol. Environ. Sci. 2016, 25, 1856–1864. (In Chinese) [Google Scholar]
- Hei, Z.; Xiang, H.; Zhang, J.; Liang, K.; Zhong, J.; Li, M.; Lu, Y. Rice intercropping with water mimosa (Neptunia oleracea Lour.) can facilitate soil N utilization and alleviate apparent N loss. Agric. Ecosyst. Environ. 2021, 313, 107378. [Google Scholar] [CrossRef]
- Ju, J.; Cai, Y.; Zuo, W.; Hai-Tao, Z.; Yang, H.; Mao, W.; Yu-Hua, S.; Ke, F. Effects of nitrogen management on soil nitrogen content and rice grain yield in double cropping rice production area with continuous full amount of straw returning. Commun. Soil Sci. Plant Anal. 2019, 50, 2655–2668. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, Z.; Cao, X.; Zhu, S.; Zhang, X.; Wu, L. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation. Field Crops Res. 2014, 155, 164–171. [Google Scholar] [CrossRef]
- Wu, W.; Huang, J.; Cui, K.; Nie, L.; Wang, Q.; Yang, F.; Shah, F.; Yao, F.; Peng, S. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crops Res. 2012, 128, 101–108. [Google Scholar] [CrossRef]
- Li, M.; Li, R.; Liu, S.; Zhang, J.; Luo, H.; Qiu, S. Rice-duck co-culture benefits grain 2-acetyl-1-pyrroline accumulation and quality and yield enhancement of fragrant rice. Crop J. 2019, 7, 419–430. [Google Scholar] [CrossRef]
- Gitari, H.I.; Gachene, C.K.; Karanja, N.N.; Kamau, S.; Nyawade, S.; Sharma, K.; Schulte-Geldermann, E. Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems. Agric. Water Manag. 2018, 208, 59–66. [Google Scholar] [CrossRef]
- Simko, T.W.A.V. R Package ’Corrplot’: Visualization of a Correlation Matrix; Version 0.92. 2021. Available online: https://cran.r-project.org/web/packages/corrplot/index.html (accessed on 4 December 2021).
- Kresnatita, S.; Ariffin, D.; Hariyono, D. Sitawati Micro climate behavior on cauliflower plant canopy in intercropping system with sweet corn in central Kalimantan. Int. J. Sci. Res. Publ. 2018, 8, 76–83. [Google Scholar] [CrossRef]
- Jambhulkar, P.P.; Jambhulkar, N.; Meghwal, M.; Ameta, G.S. Altering conidial dispersal of Alternaria solani by modifying microclimate in tomato crop canopy. Plant Pathol. J. 2016, 32, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partelli, F.L.; Araújo, A.V.; Vieira, H.D.; Dias, J.R.M.; De Menezes, L.F.T.; Ramalho, J. Microclimate and development of ’Conilon’ coffee intercropped with rubber trees. Pesquisa Agropecuária Bras. 2014, 49, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Calonnec, A.; Burie, J.-B.; Langlais, M.; Guyader, S.; Saint-Jean, S.; Sache, I.; Tivoli, B. Impacts of plant growth and architecture on pathogen processes and their consequences for epidemic behaviour. Eur. J. Plant Pathol. 2012, 135, 479–497. [Google Scholar] [CrossRef]
- Ndiso, J.B.; Chemining, G.N.; Olubayo, F.M.; Saha, H.M. Effect of cropping system on soil moisture content, canopy temperature, growth and yield performance of maize and cowpea. Int. J. Agric. Sci. 2017, 3, 1271–1281. [Google Scholar]
- Dusserre, J.; Raveloson, H.; Michellon, R.; Gozé, E.; Auzoux, S.; Sester, M. Conservation agriculture cropping systems reduce blast disease in upland rice by affecting plant nitrogen nutrition. Field Crops Res. 2017, 204, 208–221. [Google Scholar] [CrossRef]
- Ballini, E.; Nguyen, T.T.; Morel, J.-B. Diversity and genetics of nitrogen-induced susceptibility to the blast fungus in rice and wheat. Rice 2013, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, D.H.; Lee, F.N.; Tebeest, D.O. Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistant cultivars. Plant Dis. 2000, 84, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Yusef, G.S.; Khalil, J.; Mohammad, R.A.M. Evaluation of quality and quantity of corn and soybean grain yield in intercropping under deficit irrigation. J. Biol. Agric. Healthc. 2014, 4, 133–139. [Google Scholar]
- Abdel-Galil, A.M.; Abdel-Ghany, R.E.A. Effect of groundnut—Sesame intercropping and nitrogen fertilizer on yield, yield components and infection of root-rot and wilt diseases. Int. J. Plant Soil Sci. 2014, 3, 623–643. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; de Moraes Costa, A.; Borghi, É.; Castro, G.S.A.; Fernandes, D.M. Fertilizer distribution mechanisms and side dress nitrogen fertilization in upland rice under no-tillage system. Sci. Agric. 2010, 67, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Shah, Z.; Shah, S.; Peoples, M.; Schwenke, G.; Herridge, D. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Field Crops Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Hei, Z.; Xiang, H.; Zhang, J.; Liang, K.; Ren, X.; Sun, Y.; Wu, R. Water mimosa (Neptunia oleracea Lour.) can fix and transfer nitrogen to rice in their intercropping system. J. Sci. Food Agric. 2021, 1, 156–166. [Google Scholar] [CrossRef]
- Bienvenido, O.J. Rice grain quality: Problems and challenges. Cereal Food. World 1990, 35, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.L.; Wei, Y.Z.; Yang, X.E.; Feng, Y.; Wu, C.Y. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in Rice (Oryza sativa). Rice Sci. 2007, 14, 289–294. [Google Scholar] [CrossRef]
- Tamer, F.M. Impact of organic materials combined with mineral nitrogen on rice growth, yield, grain quality and soil organic matter. Int. J. Chemtech. Res. 2015, 8, 1533–1542. [Google Scholar]
- Zhou, L.; Liang, S.; Ponce, K.; Marundon, S.; Ye, G.; Zhao, X. Factors affecting head rice yield and chalkiness in indica rice. Field Crops Res. 2015, 172, 1–10. [Google Scholar] [CrossRef]
- Chun, A.; Song, J.; Kim, K.J.; Lee, H.J. Quality of head and chalky rice and deterioration of eating quality by chalky rice. J. Crop Sci. Biotechnol. 2009, 12, 239–244. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Jiang, W.Q.; Qiu, S.; Xing, Z.P.; Hu, Y.J.; Guo, B.W.; Liu, G.D.; Gao, H.; Zhang, H.C.; Wei, H.Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J. Integr. Agric. 2020, 19, 1197–1214. [Google Scholar] [CrossRef]
- Ogoshi, C.; Carlos, F.S.; Waldow, D.; Miranda, F.F.; Reginato, J.L.; Ulguim, A. Influence of blast on the nutrition and yield of irrigated rice in Southern Brazil. J. Soil Sci. Plant Nutr. 2020, 20, 1378–1386. [Google Scholar] [CrossRef]
- Alves, N.B.; Balestre, M.; Pennacchi, J.P.; Fernandes, M.C.N.; Castro, D.G.; Botelho, F.B.S. Genetic progress of upland rice (Oryza sativa L.) lines for disease resistance. Plant Breed. 2020, 139, 853–861. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Ahmad, T.; Siddiqui, M.H.; Hussain, I.; Ali, S.; Ali, A.; Ahmad, Z. Forage sorghum-legumes intercropping: Effect on growth, yields, nutritional quality and economic returns. Bragantia 2019, 78, 82–95. [Google Scholar] [CrossRef]
Season | N Fertilizer | Pattern | Rice | Water Mimosa | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Per Unit Yield (t·ha−1) | Actual Yield (t·ha−1) | Per Unit Effective Panicle (104 ha−1) | Actual Effective Panicle (104 ha−1) | Grains per Panicle | Seed-Setting Rate (%) | 1000-Grain Weight (g) | Yield (t·ha−1) | |||
2018 late season | ZN | Mono | 3.22 ± 0.16 Aa | - | 252.75 ± 16.75 Bb | - | 118.76 ± 4.93 Aa | 54.15 ± 1.85 Aa | 19.11 ± 0.31 Aa | - |
Inter | 3.48 ± 0.08 Ab | 2.32 ± 0.05 b | 357.50 ± 12.75 Aa | 238.33 ± 8.50 a | 121.39 ± 5.03 Aa | 55.72 ± 2.55 Aa | 20.10 ± 0.06 Aa | 1.64 ± 0.07 b | ||
RN | Mono | 3.20 ± 0.26 Ba | - | 331.50 ± 16.5 Ba | - | 108.18 ± 2.66 Aa | 56.77 ± 3.74 Aa | 19.05 ± 0.32 Aa | - | |
Inter | 4.90 ± 0.16 Aa * | 3.27 ± 0.10 a | 405.00 ± 13.75 Aa | 270.00 ± 9.17 a | 116.95 ± 1.86 Aa | 53.92 ± 3.99 Aa | 20.14 ± 0.41 Aa | 2.70 ± 0.19 a | ||
CN | Mono | 3.61 ± 0.26 Ba * | - | 382.75 ± 24.25 Aa | - | 117.95 ± 7.94 Aa | 54.66 ± 5.45 Aa | 18.60 ± 0.63 Aa | - | |
Inter | 5.17 ± 0.12 Aa | 3.45 ± 0.08 a | 382.50 ± 16.50 Aa | 255.00 ± 11.00 a | 125.44 ± 11.32 Aa | 57.01 ± 3.14 Aa | 19.60 ± 0.18 Aa | 2.36 ± 0.18 a | ||
2019 early season | ZN | Mono | 4.72 ± 0.15 Bb | - | 325.00 ± 12.50 Ba | - | 94.34 ± 2.56 Aa | 79.09 ± 1.07 Aa | 21.14 ± 0.15 Aa | - |
Inter | 5.96 ± 0.21 Aa | 3.97 ± 0.14 a | 460.00 ± 15.25 Ab | 306.67 ± 10.17 b | 91.69 ± 2.83 Aa | 77.85 ± 1.70 Aa | 21.2 ± 0.26 Aa | 1.38 ± 0.12 b | ||
RN | Mono | 5.63 ± 0.11 Aa | - | 397.50 ± 9.25 Ba | - | 89.19 ± 4.04 Aa | 76.36 ± 1.89 Aa | 20.68 ± 0.17 Aa | - | |
Inter | 5.97 ± 0.19 Aa | 3.98 ± 0.13 a | 460.00 ± 10.75 Aa * | 306.67 ± 7.17 b | 97.96 ± 4.16 Aa | 77.82 ± 2.49 Aa | 20.81 ± 0.14 Aa | 2.48 ± 0.15 a | ||
CN | Mono | 5.34 ± 0.06 Ba | - | 393.25 ± 12.25 Aa * | - | 89.63 ± 3.57 Aa | 76.59 ± 0.71 Aa | 20.85 ± 0.23 Aa | - | |
Inter | 6.48 ± 0.23 Aa | 4.32 ± 0.15 a | 448.75 ± 16.75 Aa | 299.17 ± 11.17 b | 93.69 ± 6.05 Aa | 78.20 ± 2.42 Aa | 20.90 ± 0.30 Aa | 2.31 ± 0.17 a |
Season | N Fertilizer | Pattern | Brown Rice Rate (%) | Milled Rice Rate (%) | Head Rice Rate (%) | Length/Width | Chalky Rice Rate (%) | Chalkiness Degree (%) | Amylose Content (%) | Protein Content (%) | Alkali Value |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 late season | ZN | Mono | 75.88 ± 0.31 Ba | 62.13 ± 0.64 Aa | 51.68 ± 1.77 Aa | 3.42 ± 0.03 Aa | 3.14 ± 0.41 Aa | 0.75 ± 0.17 Aa | 17.50 ± 0.16 Aa | 12.68 ± 1.36 Aa | 6.75 ± 0.06 Aa |
Inter | 76.83 ± 0.10Ab | 63.00 ± 0.63 Aa | 52.93 ± 1.04 Aa | 3.43 ± 0.06 Aa | 2.28 ± 0.35 Aa | 0.29 ± 0.05 Ba | 17.30 ± 0.10 Aa | 14.13 ± 0.03 Aa | 6.75 ± 0.05 Aa * | ||
RN | Mono | 77.15 ± 0.60 Aa | 62.03 ± 0.69 Aa | 50.15 ± 0.42 Ba | 3.47 ± 0.03 Aa | 3.25 ± 0.23 Aa | 0.61 ± 0.07 Aa | 17.83 ± 0.23 Aa | 13.18 ± 0.83 Aa | 7.03 ± 0.05 Aa | |
Inter | 76.13 ± 0.59 Aab | 61.23 ± 1.06 Aa | 52.20 ± 0.30 Aa | 3.42 ± 0.05 Aa | 1.72 ± 0.25 Ba * | 0.24 ± 0.06 Ba | 17.63 ± 0.11 Aa | 13.15 ± 0.93 Aa | 7.05 ± 0.05 Aa | ||
CN | Mono | 76.65 ± 0.85 Aa | 62.18 ± 1.14 Aa | 50.08 ± 1.53 Aa | 3.49 ± 0.05 Aa | 2.77 ± 0.35 Aa * | 0.44 ± 0.07 Aa | 17.75 ± 0.09 Aa | 13.05 ± 0.85 Aa | 7.08 ± 0.09 Aa * | |
Inter | 78.05 ± 0.22 Aa | 63.20 ± 0.16 Aa | 51.40 ± 0.36 Aa | 3.48 ± 0.06 Aa | 1.59 ± 0.31 Aa | 0.43 ± 0.07 Aa | 17.48 ± 0.11 Aa | 13.23 ± 0.81 Aa | 7.08 ± 0.05 Aa | ||
2019 early season | ZN | Mono | 73.38 ± 0.33 Ab | 58.36 ± 1.07 Aa | 38.35 ± 2.32 Aa | 3.37 ± 0.02 Ab | 2.88 ± 0.43 Aa | 0.46 ± 0.04 Aa | 17.28 ± 0.23 Aa | 8.38 ± 0.31 Ab | 6.65 ± 0.02 Ab |
Inter | 73.45 ± 0.31 Aa | 57.43 ± 1.81 Aa | 39.35 ± 0.65 Aa | 3.38 ± 0.02 Aa * | 1.98 ± 0.41 Aa | 0.28 ± 0.038 Ba | 17.30 ± 0.39 Aa | 8.50 ± 0.31 Ab * | 6.73 ± 0.06 Aa * | ||
RN | Mono | 74.13 ± 0.25 Aab | 57.74 ± 0.23 Aa | 39.12 ± 1.69 Aa | 3.42 ± 0.02 Aab | 2.98 ± 0.26 Aa | 0.35 ± 0.02 Aa | 16.90 ± 0.15 Aa | 9.95 ± 0.12 Aa | 6.88 ± 0.03 Aa | |
Inter | 73.73 ± 0.37 Aa | 60.66 ± 1.58 Aa | 41.01 ± 1.28 Aa | 3.42 ± 0.01 Aa | 1.53 ± 0.17 Ba * | 0.25 ± 0.02 Ba | 17.08 ± 0.29 Aa | 9.83 ± 0.23 Aa | 6.88 ± 0.03 Aa | ||
CN | Mono | 74.55 ± 0.23 Aa | 60.05 ± 1.31 Aa | 39.43 ± 0.65 Aa | 3.46 ± 0.01 Aa * | 2.47 ± 0.27 Aa * | 0.34 ± 0.07 Aa | 16.85 ± 0.13 Aa | 10.00 ± 0.26 Aa * | 6.98 ± 0.05 Aa * | |
Inter | 74.20 ± 0.42 Aa | 59.20 ± 0.51 Aa | 37.48 ± 1.86 Aa | 3.43 ± 0.01 Aa | 1.59 ± 0.12 Ba | 0.30 ± 0.02 Aa | 17.15 ± 0.44 Aa | 9.83 ± 0.28 Aa | 6.88 ± 0.85 Aa |
Season | N Fertilizer | Pattern | Rice Seed | Water Mimosa | Fertilizer | Labor | Rice Value | Water Mimosa Value | Net Income |
---|---|---|---|---|---|---|---|---|---|
2018 late season | ZN | Mono | 600 | - | 731 | 7500 | 12,880 | - | 4049 |
Inter | 300 | 0 | 731 | 8250 | 6960 | 11,495 | 9174 | ||
RN | Mono | 600 | - | 1949 | 7500 | 12,800 | - | 2751 | |
Inter | 300 | 0 | 1949 | 8250 | 9800 | 18,933 | 18,234 | ||
CN | Mono | 600 | - | 2291 | 7500 | 14,440 | - | 4049 | |
Inter | 300 | 0 | 2291 | 8250 | 10,340 | 16,522 | 16,021 | ||
2019 early season | ZN | Mono | 600 | - | 731 | 7500 | 18,880 | - | 10,049 |
Inter | 300 | 0 | 731 | 8250 | 11,920 | 9694 | 12,333 | ||
RN | Mono | 600 | - | 1949 | 7500 | 22,520 | - | 12,471 | |
Inter | 300 | 0 | 1949 | 8250 | 11,940 | 17,389 | 18,830 | ||
CN | Mono | 600 | - | 2291 | 7500 | 21,360 | - | 10,969 | |
Inter | 300 | 0 | 2291 | 8250 | 12,960 | 16,183 | 18,302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hei, Z.; Xiang, H.; Zhang, J.; Liang, K.; Zhong, J.; Li, M.; Ren, X. Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application. Agriculture 2022, 12, 13. https://doi.org/10.3390/agriculture12010013
Hei Z, Xiang H, Zhang J, Liang K, Zhong J, Li M, Ren X. Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application. Agriculture. 2022; 12(1):13. https://doi.org/10.3390/agriculture12010013
Chicago/Turabian StyleHei, Zewen, Huimin Xiang, Jiaen Zhang, Kaiming Liang, Jiawen Zhong, Meijuan Li, and Xiaoqiao Ren. 2022. "Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application" Agriculture 12, no. 1: 13. https://doi.org/10.3390/agriculture12010013
APA StyleHei, Z., Xiang, H., Zhang, J., Liang, K., Zhong, J., Li, M., & Ren, X. (2022). Intercropping of Rice and Water Mimosa (Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application. Agriculture, 12(1), 13. https://doi.org/10.3390/agriculture12010013