Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Ploidy Evaluation
2.3. PCR-RAPD, PCR-ISSR Analysis
3. Results
3.1. Cytological and Agromorphological Characteristics of the Progeny of Anther-Derived Plants
3.2. Molecular Analysis of Progeny of Anther-Derived Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seguí-Simarro, J.M. Doubled Haploid Technology; Humana Press: Totowa, NJ, USA, 2021; Volume 1. [Google Scholar]
- Nowaczyk, P.; Olszewska, D.; Kisiała, A. Individual reaction of Capsicum F2 hybrid genotypes in anther cultures. Euphytica 2009, 168, 225–233. [Google Scholar] [CrossRef]
- Germanà, M.A. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep. 2011, 30, 839–857. [Google Scholar] [CrossRef] [PubMed]
- Grozeva, S.; Todorova, V.; Nankar, N.A. Creation of pepper doubled haploids and morphological characterization of andro-genic plants. Euphytica 2021, 217, 113. [Google Scholar] [CrossRef]
- Irikova, T.; Grozeva, S.; Rodeva, V. Anther culture in pepper (Capsicum annuum L.) in vitro. Acta Physiol. Plant. 2011, 33, 1559–1570. [Google Scholar] [CrossRef]
- Nowaczyk, L.; Nowaczyk, P.; Olszewska, D. Treating donor plants with 2,4-dichlorophenoxyacetic acid can increase the effectiveness of induced androgenesis in Capsicum spp. Sci. Hortic. 2016, 205, 1–6. [Google Scholar] [CrossRef]
- Ata, A.; Keleş, D.; Taşkin, H.; Büyükalaca, S. Effects of season, genotype, and nutrient medium on pepper anther culture and microspore developmen. Turk. J. Agric. For. 2019, 43, 123–137. [Google Scholar] [CrossRef]
- Parra-Vega, V.; Renau-Morata, B.; Sifres, A.; Seguí-Simarro, J.M. Stress treatments and in vitro culture conditions influence microspore embryogenesis and growth of callus from anther walls of sweet pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult. 2012, 112, 353–360. [Google Scholar] [CrossRef]
- Kim, M.; Park, E.J.; Lee, Y. High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult. 2013, 112, 191–201. [Google Scholar] [CrossRef]
- Olszewska, D.; Niklas-Nowak, A.; Nowaczyk, P. The assessment of doubled haploid lines obtained in pepper (Capsicum annuum L.) anther culture. Folia Hortic. 2011, 23, 93–99. [Google Scholar] [CrossRef]
- Olszewska, D.; Niklas-Nowak, A.; Nowaczyk, L. Estimation of genetic divergence within androgenic regenerants of Capsicum annuum L. ATZ1 × C. frutescens L. F1 plants using random amplified polymorphic DNA markers. BioTechnologia 2017, 98, 175–182. [Google Scholar] [CrossRef]
- Prasad, B.; Khan, R.G.; Radha, T.; Ravi, C.; Venkataiah, P.; Subhash, K.; Reuben, T.C. DNA profiling of commercial chilli pepper (Capsicum annuum L.) varieties using random amplified polymorphic DNA (RAPD) markers. Afr. J. Biotechnol. 2013, 12, 4730–4735. [Google Scholar] [CrossRef]
- Dumas de Vaulx, R.; Chambonnet, D.; Pochard, E. Culture in vitro d’anthères de piment (Capsicum annuum L.) amèlioration des taux d’obtention de plantes chez differents gènotypes par des traitements à +35 7. °C. Agronomie 1981, 1, 859–864. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Ilbi, H. RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Sci. Hortic. 2002, 97, 211–218. [Google Scholar] [CrossRef]
- Keleş, D.; Pinar, H.; Ata, A.; Taşkın, H.; Yıldız, S.; Büyükalaca, S. Effect of pepper types on obtaining spontaneous doubled haploid plants via anther culture. HortScience 2015, 50, 1671–1676. [Google Scholar] [CrossRef]
- Al Remi, F.; Taşkın, H.; Sönmez, K.; Büyükalaca, S.; Ellialtıoğlu, Ş. Effect of genotype and nutrient medium on anther culture of pepper (Capsicum annuum L). Turk. J. Agr. Nat. Sci. 2014, 1, 108–116. [Google Scholar]
- Gemesne Juhász, A.; Petus, M.; Venczel, G.; Zatykó, L.; Gyulai, G.; Cséplö, M. Genetic variability of anther donor versus spontaneous doubled haploid descendents and colchicine induced doubled haploid sweet pepper (Capsicum annuum L.) Lines. Acta Hortic. 2001, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Niklas-Nowak, A.; Olszewska, D.; Kisiała, A.; Nowaczyk, P. Study of individual plant responsiveness in anther cultures of selected pepper (Capsicum spp.) genotypes. Folia Hortic. 2012, 24/2, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Olszewska, D.; Kisiała, A.; Niklas-Nowak, A.; Nowaczyk, P. Study of in vitro anther culture in selected genotypes of genus Capsicum. Turk. J. Boil. 2014, 38, 118–124. [Google Scholar] [CrossRef]
- Olszewska, D.; Tomaszewska-Sowa, M.; Witkowska, E.; Litewka, J. Functional characteristics and molecular identification of interspecific hybrids from genus Capsicum. Agriculture 2021, 11, 1198. [Google Scholar] [CrossRef]
- Bhadragoudar, M.R.; Patil, C.G. Assessment of genetic diversity among Capsicum annuum L. genotypes using RAPD markers. Afr. J. Biotechnol. 2011, 10, 17477–17483. [Google Scholar]
- Tilahun, S.; Paramaguru, P.; Rajamani, K. Capsaicin and ascorbic acid variability in chilli and paprika cultivars as revealed by HPLC analysis. J. Plant Breed Genet. 2013, 1, 85–89. [Google Scholar]
- Shapturenko, M.N.; Tarutina, L.A.; Mishin, L.A.; Kilchevsky, A.V.; Khotyleva, L.V. DNA divergence as a criterion of a sweet pepper (Capsicum annuum L.) selection for heterosis. Russ. J. Genet. 2014, 50, 123–130. [Google Scholar] [CrossRef]
- Lijun, O.; Xuexiao, Z. Inter simple sequence repeat analysis of genetic diversity of five cultivated pepper species. Afr. J. Biotechnol. 2012, 11(4), 752–757. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.M. Inter-simple sequence repeat (ISSR) markers in the evaluation of genetic polymorphism of Egyptian Capsicum L. hybrids. Afr. J. Biotechnol. 2013, 12, 665–669. [Google Scholar]
- Thul, S.T.; Darokar, M.P.; Shasany, A.K.; Khanuja, S.P.S. Molecular profiling for genetic variability in Capsicum species based on ISSR and RAPD markers. Mol. Biotechnol. 2011, 51, 137–147. [Google Scholar] [CrossRef] [PubMed]
Fruit Trait: | Progeny of Diploid Plant | Progeny of Haploid Plant | |
---|---|---|---|
Plants: 1–10 Mean ± SD | Plants: 11, 13, 14, 15, and 16 Mean ± SD | Plants: 12, 17, and 18 Mean ± SD | |
Weight (g) | 143 a * ± 21 | 152 a ± 18 | 83 b ± 28 |
Length (mm) | 134 b± 27 | 170 a ± 10 | 103 c ± 34 |
Width (mm) | 62 a ± 7 | 60 ab ± 6 | 53 b ± 8 |
Wall thickness (mm) | 4.96 ns ± 1.47 | 4.81 ns ± 0.57 | 4.24 ns ± 1.60 |
Wet seed weight (g) | 3.24 ns ± 1.08 | 3.30 ns ± 0.39 | 3.06 ns ± 1.10 |
Seeds number | 220 ns ± 60 | 239 ns ± 75 | 197 ns ± 66 |
Primer | Sequence (5′-3′) | Number of Products | Range of Product Size | Polymorphic Products | Percentage of Polymorphism |
---|---|---|---|---|---|
A06 | GGTCCCTGAC | 9 | 167–1382 bp | 1 | 11.1 |
A10 | GTGATCGCAG | 13 | 123–1421 bp | - | 0 |
A11 | CAATCGCCGT | 14 | 240–1487 bp | 2 | 25 |
A14 | TCTGTGCTGG | 10 | 251–1295 bp | 2 | 20 |
A17 | GACCGCTTGT | 16 | 234–2591 bp | - | 0 |
A19 | CAAACGTCGG | 13 | 156–1681 bp | - | 0 |
AE10 | CTGAAGCGCA | 15 | 212–2154 bp | 1 | 6.7 |
AE11 | AAGAACGGGA | 14 | 106–2040 bp | 1 | 14.3 |
AE19 | ACGGCGTATG | 13 | 295–2482 bp | 2 | 15.4 |
B10 | CTGCTGGGAC | 16 | 102–1841 bp | 1 | 6.3 |
Total | 10 | 83 | 102–2591 bp | 10 | 12% |
Primer | Sequence (5′–3′) | Number of Products | Range of Product Size | Monomorphic Products |
---|---|---|---|---|
I 1 | (GA)8YC | 5 | 221–562 | 5 |
I 2 | (GACA)4A | 6 | 212–1005 | 6 |
I 4 | (AG)8YC | 5 | 502–1326 | 5 |
I 5 | (CTC)4YC | 7 | 167–1010 | 7 |
I 7 | (TGAG)4 | 6 | 408–1184 | 6 |
I 9 | (GAG)3GG | 9 | 397–1623 | 9 |
I 10 | (GA)8YT | 6 | 203–896 | 6 |
I 11 | (CT)8GC | 4 | 508–843 | 4 |
I 14 | (AG)8T | 5 | 217–777 | 5 |
I 26 | (CA)8AT | 6 | 345–832 | 6 |
I 27 | (GA)8CT | 5 | 189–989 | 5 |
I 28 | (CA)8G | 5 | 225–536 | 5 |
I 33 | (GA)8CTC | 8 | 228–1497 | 8 |
I 56 | (GA)8G | 7 | 180–1832 | 7 |
I 63 | (CCCT)4 | 7 | 396–1122 | 7 |
I 65 | (GA)8C | 6 | 123–964 | 6 |
Total | 16 | 97 | 123–1832 bp | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszewska, D.; Tomaszewska-Sowa, M. Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L. Agriculture 2022, 12, 19. https://doi.org/10.3390/agriculture12010019
Olszewska D, Tomaszewska-Sowa M. Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L. Agriculture. 2022; 12(1):19. https://doi.org/10.3390/agriculture12010019
Chicago/Turabian StyleOlszewska, Dorota, and Magdalena Tomaszewska-Sowa. 2022. "Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L." Agriculture 12, no. 1: 19. https://doi.org/10.3390/agriculture12010019
APA StyleOlszewska, D., & Tomaszewska-Sowa, M. (2022). Androgenesis—Technology for Obtaining Genetically Stable Breeding Material of Capsicum annuum L. Agriculture, 12(1), 19. https://doi.org/10.3390/agriculture12010019