Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize (Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Design
2.2. Experimental Method
2.2.1. Soil Water Content and Leaf Water Content of Maize
2.2.2. Population Characteristics and Light Transmission Ratio
2.2.3. Photosynthesis (Pn) and Transpiration rate (Tr)
2.2.4. Aboveground Dry Matter and Yield Traits
2.2.5. Estimation of Competitive Intensity between Individuals
2.3. Statistical Analysis
3. Results
3.1. Soil Water Content and Leaf Water Content of Maize under Different Planting Patterns
3.2. Population Characteristic and Light Transmission Ratio
3.3. Pn and Tr of Maize under Different Planting Patterns
3.4. Relative Dry Matter (RDM) and Competitive Intensity (CI) in Different Planting Patterns
3.5. Dry Matter Accumulation and Yield Characteristics of Maize in Different Planting Pattern
4. Discussion
4.1. Effect of Stereoscopic Planting on the Characteristics of the Population and Canopy Structure of Maize
4.2. Effect of Stereoscopic Planting on Leaf Water Content and Pn of Maize
4.3. Effect of Stereoscopic Planting on Population Competition in Maize
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, Q.M.; Sun, L.F.; Mou, H.Y.; Ali, S.; Liu, D.H.; Zhang, Y.; Zhang, P.; Ren, X.L.; Jia, Z.K. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric. Water Manag. 2018, 201, 287–298. [Google Scholar] [CrossRef]
- Zhai, L.C.; Xie, R.Z.; Ming, B.; Li, S.K.; Ma, D.L. Evaluation and analysis of intraspecific competition in maize: A case study on plant density experiment. J. Integr. Agric. 2018, 17, 2235–2244. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.B.; Zhang, J.W.; Dong, S.T.; Liu, P.; Zhao, B.; Yang, J.S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutr. Fertil. Sci. 2012, 18, 1343–1353. [Google Scholar]
- Lv, L.H.; Tao, H.B.; Xia, L.K.; Zhang, Y.J.; Zhao, M.; Zhao, J.R.; Wang, P. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities. Acta Agron. Sin. 2008, 34, 447–455. [Google Scholar] [CrossRef]
- Liu, S.Q.; Jian, S.L.; Li, X.N.; Wang, Y. Wide–Narrow Row Planting Pattern Increases Root Lodging Resistance by Adjusting Root Architecture and Root Physiological Activity in Maize (Zea mays L.) in Northeast China. Agriculture 2021, 11, 517. [Google Scholar] [CrossRef]
- Xu, Y.X.; Jiang, S.S.; Zhou, F.R.; Wen, Z.; Bai, X.; Shi, H.T.; Hu, M.; Zhang, C.Y. Change trends of meteorological factors during the maize growth period and their relationships with meteorological yield in Jinzhou during 1981–2010. J. Meteorol. Environ. 2017, 33, 82–90. [Google Scholar] [CrossRef]
- He, H.; Hu, Q.; Li, R.; Pan, X.; Huang, B.; He, Q. Regional gap in maize production, climate and resource utilization in China. Field Crop. Res. 2020, 254, 107830. [Google Scholar] [CrossRef]
- Niu, L.; Yan, Y.; Hou, P.; Bai, W.; Zhao, R.; Wang, Y.; Li, S.; Du, T.; Zhao, M.; Song, J.; et al. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. Crop J. 2020, 8, 548–564. [Google Scholar] [CrossRef]
- Ma, L.; Li, C.H.; Fu, J.; Guo, X.L.; Zhao, X.; Gao, C.; Wang, L. Effects of ridge planting on the photosynthetic characteristics and yield of summer maize in high yield field. Acta Ecol. Sin. 2011, 31, 7141–7150. [Google Scholar]
- Zhou, L.M.; Jin, S.L.; Liu, C.A.; Xiong, Y.C.; Si, J.T.; Li, X.G.; Gan, Y.T.; Li, F.M. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crop. Res. 2012, 126, 181–188. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.Y.; Xiong, Y.C.; Nguluu, S.N.; Li, F.M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 2016, 80, 124–136. [Google Scholar] [CrossRef]
- Liu, T.N.; Chen, J.Z.; Wang, Z.Y.; Wu, X.R.; Wu, X.C.; Ding, R.X.; Han, Q.F.; Cai, T.; Jia, Z.K. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crop. Res. 2018, 219, 242–249. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E.; Cirilo, A.G. Plant population density, row spacingand hybrid effects on maize canopy architecture and light attenuation. Field Crop. Res. 2001, 71, 183–193. [Google Scholar] [CrossRef]
- Jia, Q.M.; Sun, L.F.; Ali, S.; Zhang, Y.; Liu, D.H.; Kamran, M.; Zhang, P.; Jia, Z.K.; Ren, X.L. Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China. Agric. Water Manag. 2018, 202, 19–32. [Google Scholar] [CrossRef]
- Zhou, L.M.; Li, F.M.; Jin, S.L.; Song, Y.J. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Gong, Y.; Lu, X.; Nielsen, D.C. Yield and Water Use of Siberian Wildrye with Ridge and Furrow Planting in Northern China. Agron. J. 2013, 105, 1787–1796. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, R.Y.; Ma, B.L.; Xiong, Y.C.; Qiang, S.C.; Wang, C.L.; Liu, C.A.; Li, F.M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.W.; Lv, P.; Yang, J.S.; Liu, P.; Dong, S.T.; Li, D.H.; Sun, Q.Q. Effect of Plant Density on Grain Yield Dry Matter Accumulation and Parti-tioning in Summer Maize Cultivar Denghai 661. Acta Agron. Sin. 2011, 37, 1301–1307. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J. How a Corn Plant Develops; Special Report 48; Iowa State University of Science and Technology Cooperative Extension Services: Ames, IA, USA, 1982; 21p. [Google Scholar]
- Liu, T.N.; Gu, L.M.; Xu, C.L.; Dong, S.T. Responses of group and individual leaf photosynthetic characteristics of two summer maize (Zea mays L.) to leaf removal under high plant density. Can. J. Plant Sci. 2014, 94, 1449–1459. [Google Scholar] [CrossRef]
- Tokatlidis, I.S.; Has, V.; Melidis, V.; Has, I.; Mylonas, I.; Evgenidis, G.; Copandean, A.; Ninou, E.; Fasoula, V.A. Maize hybrids less dependent on high plant densities improve resource-use efficiency in rainfed and irrigated conditions. Field Crop. Res. 2011, 120, 345–351. [Google Scholar] [CrossRef]
- Wu, Y.; Jia, Z.K.; Ren, X.L.; Zhang, Y.; Chen, X.; Bing, H.Y.; Zhang, P. Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China. Agric. Water Manag. 2015, 158, 1–9. [Google Scholar] [CrossRef]
- Saradadevi, R.; Palta, J.A.; Siddique, K.H.M. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat. Front Plant Sci 2017, 8, 1251. [Google Scholar] [CrossRef]
- Yang, J.S.; Gao, H.Y.; Liu, P.; Li, G.; Dong, S.T.; Zhang, J.W.; Wang, J.F. Effects of Planting Density and Row Spacing on Canopy Apparent Photosyn-thesis of High-Yield Summer Corn. Acta Agron. Sin. 2010, 36, 1226–1235. [Google Scholar] [CrossRef]
- Slattery, R.A.; VanLoocke, A.; Bernacchi, C.J.; Zhu, X.G.; Ort, D.R. Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions. Front Plant Sci 2017, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.J.; Li, M.; Li, Z.H. Effect of cultivation methods and crop community cons truction on photosynthetic capacity and yield of spring maize in cold region. J. Maize Sci. 2006, 14, 78–83. [Google Scholar] [CrossRef]
- Zhao, W.; Liu, L.; Shen, Q.; Yang, J.; Han, X.; Tian, F.; Wu, J. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water 2020, 12, 2127. [Google Scholar] [CrossRef]
- Ma, S.C.; Duan, A.W.; Wang, R.; Guan, Z.M.; Yang, S.J.; Ma, S.T.; Shao, Y. Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation. Agric. Water Manag. 2015, 148, 123–129. [Google Scholar] [CrossRef]
- Wang, F.; He, Q.J.; Zhou, G.S. Leaf water content at different positions and its relationship with photosynthesis when consecutive drought treatments are applied to summer maize from the 3-leaf stage. Acta Ecol. Sin. 2019, 39, 254–264. [Google Scholar]
- Shen, D.; Zhang, G.; Xie, R.; Ming, B.; Hou, P.; Xue, J.; Li, S.; Wang, K. Improvement in Photosynthetic Rate and Grain Yield in Super-High-Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch Drip Irrigation. Agronomy 2020, 10, 1778. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Jia, B.; Zhou, G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. Front Plant Sci 2016, 7, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo Roman, V.; van de Zedde, R.; Peller, J.; Visser, R.G.F.; van der Linden, C.G.; van Loo, E.N. High-Resolution Analysis of Growth and Transpiration of Quinoa Under Saline Conditions. Front Plant Sci 2021, 12, 634311. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.J. In fluence of density ratios in mixed planting on competitive indexes of wheat varieties. Chin. J. Eco-Agric. 2008, 16, 534–536. [Google Scholar] [CrossRef]
- Bonser, S.P.; Robinson, D. High reproductive efficiency as an adaptive strategy in competitive environments. Funct. Ecol. 2013, 27, 876–885. [Google Scholar] [CrossRef]
- Weigelt, A.; Jolliffe, P. Indices of Plant Competition. J. Ecol. 2003, 91, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xie, R.Z.; Wang, K.R.; Ming, B.; Guo, Y.Q.; Zhang, G.Q.; Li, S.K. Variations in Maize Dry Matter, Harvest Index, and Grain Yield with Plant Density. Agron. J. 2015, 107, 829–834. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E. Intra-specific competition in maize: Contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crop. Res. 2006, 97, 155–166. [Google Scholar] [CrossRef]
- Donald, C.M. Competitive plants, communal plants, and yield in wheat crops. In Wheat Science Today Tomorrow; GBR; Evans, L.T., Peacock, W.J., Eds.; Cambridge University Press: Cambridge, UK, 1981; pp. 223–247. [Google Scholar]
Leaf Water Content | Plant Height | Leaf Area | LT | Pn | Tr | DMW per Plant | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2018 | 2018 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Planting pattern (P) | 33.205 ** | 44.883 ** | 1896.4 ** | 492.942 ** | 226.439 ** | 129.699 ** | 106.128 ** | 32.681 ** | 29.611 ** | 81.522 ** | 68.369 ** |
Density (D) | 28.677 ** | 52.079 ** | 141.198 ** | 168.379 ** | 133.834 ** | 250.513 ** | 67.057 ** | 3.106 ns | 3.594 * | 377.958 ** | 230.78 ** |
stage (S) | 1480.003 ** | 1873.957 ** | 362,703.553 ** | 19,202.046 ** | 1685.966 ** | 528.292 ** | 505.19 ** | 50.204 ** | 49.147 ** | 42,251.097 ** | 28,596.452 ** |
P × D | 0.787 ns | 0.676 ns | 19.148 ** | 1.517 ns | 30.067 ** | 11.154 ** | 3.244 * | 0.818 ns | 0.906 ns | 2.608 * | 4.353 ** |
P × S | 71.135 ** | 57.117 ** | 44.124 ** | 32.039 ** | 27.844 ** | 1.084 ns | 3.271 * | 2.211 ns | 0.287 ns | 10.614 ** | 12.163 ** |
D × S | 1.415 ns | 2.964 ns | 10.281 ** | 39.683 ** | 30.328 ** | 5.298 ** | 18.503 ** | 1.023 ns | 0.502 ns | 89.409 ** | 76.922 ** |
P × D × S | 0.55 ns | 1.569 ns | 18.723 ** | 3.582 ** | 24.475 ** | 0.652 ns | 0.387 ns | 0.132 ns | 0.558 ns | 1.913 ns | 1.363 ns |
Treatments | Kernel per Spike | Thousand Seed Weight (g) | Grain Yield (kg ha−1) | The Average Yield (kg ha−1) | |||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
D1 | CK | 598.4 b | 604.8 b | 303.4 b | 275.3 b | 10,148.8 cd | 9990.5 e | 10,148.8 e | 9990.5 d |
T-R | 587.3 b | 592.2 b | 304.2 b | 282.0 b | 10,224.3 cd | 10,019.4 e | 10,797.1 d | 10,544.7 c | |
T-F | 614.6 a | 628.8 a | 311.1 a | 293.4 a | 11,369.9 b | 11,069.9 c | |||
D2 | CK | 480.2 b | 562.6 d | 293.1 c | 267.9 c | 10,549.6 c | 10,499.5 d | 10,549.6 d | 10,499.5 c |
T-R | 496.3 a | 602.9 b | 291.5 c | 272.0 bc | 10,843.9 c | 11,924.9 b | 11,243.4 c | 12,112.4 a | |
T-F | 485.7 ab | 574.8 c | 306.3 b | 276.6 b | 11,642.9 b | 12,299.9 ab | |||
D3 | CK | 436.6 c | 465.9 g | 297.8 c | 265.1 c | 11,684.2 b | 11,114.9 c | 11,684.2 b | 11,114.9 b |
T-R | 438.7 c | 532.6 e | 306.8 b | 265.7 c | 11,701.5 b | 12,104.9 b | 11,966.7 a | 12,419.9 a | |
T-F | 432.4 c | 516.5 f | 314.6 a | 260.4 c | 12,231.9 a | 12,734.9 a | |||
Two-way ANOVA (F-value) | |||||||||
Planting pattern (P) | 111.915 ** | 4863.466 ** | 974.702 ** | 247.588 ** | 2419.75 ** | 2252.801 ** | |||
Density (D) | 91,694.210 ** | 45,579.660 ** | 650.405 ** | 1807.426 ** | 3906.7 ** | 2853.074 ** | |||
P × D | 519.905 ** | 2830.933 ** | 87.521 ** | 214.041 ** | 122.551 ** | 170.406 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Mei, F.; Wang, T.; Liu, Z.; Ma, S. Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize (Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources. Agriculture 2022, 12, 20. https://doi.org/10.3390/agriculture12010020
Ma S, Mei F, Wang T, Liu Z, Ma S. Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize (Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources. Agriculture. 2022; 12(1):20. https://doi.org/10.3390/agriculture12010020
Chicago/Turabian StyleMa, Shoutian, Fujian Mei, Tongchao Wang, Zhandong Liu, and Shouchen Ma. 2022. "Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize (Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources" Agriculture 12, no. 1: 20. https://doi.org/10.3390/agriculture12010020
APA StyleMa, S., Mei, F., Wang, T., Liu, Z., & Ma, S. (2022). Stereoscopic Planting in Ridge and Furrow Increases Grain Yield of Maize (Zea mays L.) by Reducing the Plant’s Competition for Water and Light Resources. Agriculture, 12(1), 20. https://doi.org/10.3390/agriculture12010020