Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Study Population, Sampling Strategy, and Sample Size Determination
2.3. Sample and Data Collection
Serum Sample Collection
2.4. Serum and Outbreak Sample Collection
2.5. Questionnaire Survey
3. Laboratory Analysis
3.1. Serological Analysis
3.2. Molecular Analysis
3.3. Data Analysis
4. Results
4.1. Knowledge of FMD Occurrence, Introduction, and Control Practices
4.2. Sero-Prevalence of FMD in Cattle, Small Ruminants, and Swine
4.2.1. Seroprevalence of FMD in Cattle
4.2.2. Sero-Prevalence of FMD in Domestic Small Ruminants
4.2.3. Sero-Prevalence of FMD in Swine
4.3. Molecular Detection and Characterization of FMDV
4.3.1. FMDV Outbreak Characterization and Ag Detection
4.3.2. Phylogenetic Analysis of FMDV Serotype O
4.4. Phylogenetic Analysis of FMDV Serotype A
5. Discussion
5.1. Knowledge, Attitude, and Practice Regarding FMD Outbreak Occurrence, Frequency and its Control Measures
5.2. Seroprevalence and Factors Associated with FMD Sero-Positivity in Cattle
5.3. Sero-Prevalence of FMD in Swine
5.4. SeroPrevalence of FMD in Domestic Small Ruminants
5.5. Phylogenic Analysis
6. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandersen, S.; Mowat, N. Foot-and-mouth disease: Host range and pathogenesis. Curr. Top. Microbiol. Immunol. 2005, 288, 9–42. [Google Scholar] [CrossRef]
- Arzt, J.; Baxt, B.; Grubman, M.J.; Jackson, T.; Juleff, N.; Rhyan, J.; Rieder, E.; Waters, R.; Rodriguez, L.L. The pathogenesis of foot-and-mouth disease II: Viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus-host interactions. Transbound. Emerg. Dis. 2011, 58, 305–326. [Google Scholar] [CrossRef] [PubMed]
- Arzt, J.; Juleff, N.; Zhang, Z.; Rodriguez, L.L. The pathogenesis of foot-and-mouth disease I: Viral pathways in cattle. Transbound. Emerg. Dis. 2011, 58, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Zell, R.; Delwart, E.; Gorbalenya, A.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef]
- Paton, D.J.; Valarcher, J.F.; Bergmann, I.; Matlho, O.G.; Zakharov, V.M.; Palma, E.L.; Thomson, G.R. Selection of foot and mouth disease vaccine strains: A review. Rev. Sci. Tech. 2005, 24, 981–993. Available online: https://pubmed.ncbi.nlm.nih.gov/16642769/ (accessed on 15 June 2021). [CrossRef] [PubMed]
- Waters, R.; Ludi, A.B.; Fowler, V.L.; Wilsden, G.; Browning, C.; Gubbins, S.; Statham, B.; Bin-Tarif, A.; Mioulet, V.; King, D.J.; et al. Efficacy of a high-potency multivalent foot-and-mouth disease virus vaccine in cattle against heterologous challenge with a field virus from the emerging A/ASIA/G-VII lineage. Vaccine 2018, 36, 1901–1907. [Google Scholar] [CrossRef]
- Martel, J.L. Foot-and-mouth disease in Ethiopia. Distribution of serotypes of foot-and-mouth disease virus. Rev. Elev. Med. Vet. Pays Trop. 1974, 27, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, T.J.; Moses, K.; Manyahilishal, K.E. Participatory appraisal of foot and mouth disease in the Afar pastoral area, northeast Ethiopia: Implications for understanding disease ecology and control strategy. Trop. Anim. Health Prod. 2010, 42, 193–201. [Google Scholar] [CrossRef]
- Ayelet, G.; Gelaye, E.; Negussie, H.; Asmare, K. Study on the epidemiology of foot and mouth disease in Ethiopia. Rev. Sci. Tech. 2012, 31, 789–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayissa, B.; Ayelet, G.; Kyule, M.; Jibril, Y.; Gelaye, E. Study on seroprevalence, risk factors, and economic impact of foot-and-mouth disease in Borena pastoral and agro-pastoral system, southern Ethiopia. Trop. Anim. Health Prod. 2011, 43, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Megersa, B.; Abuna, F.; Amanu, K.; Rufael, T. Risk factors for foot and mouth disease seroprevalence in indigenous cattle in Southern Ethiopia: The effect of production system. Trop. Anim. Health Prod. 2008, 41, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Mekonen, H.; Beyene, D.; Rufael, T.; Feyisa, A.; Abunna, F. Study on the prevalence of Foot and Mouth Disease in Borana and Guji Zones, southern Ethiopia Study on the prevalence of Foot and Mouth Disease in Borana. Veter. World 2011, 4, 293–296. [Google Scholar] [CrossRef]
- Rufael, T.; Catley, A.; Bogale, A.; Sahle, M.; Shiferaw, Y. Foot and mouth disease in the Borana pastoral system, southern Ethiopia and implications for livelihoods and international trade. Trop. Anim. Health Prod. 2007, 40, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Sulayeman, M.; Dawo, F.; Mammo, B.; Gizaw, D.; Shegu, D. Isolation, molecular characterization and sero-prevalence study of foot-and-mouth disease virus circulating in central Ethiopia. BMC Veter. Res. 2018, 14, 110. [Google Scholar] [CrossRef] [PubMed]
- Mesfine, M.; Nigatu, S.; Belayneh, N.; Jemberu, W.T. Sero-Epidemiology of Foot and Mouth Disease in Domestic Ruminants in Amhara Region. Front. Veter. Sci. 2019, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Sahle, M.; Venter, E.H.; Dwarka, R.M.; Vosloo, W. Molecular epidemiology of serotype O foot-and-mouth disease virus isolated from cattle in Ethiopia between 1979–2001. Onderstepoort J. Veter. Res. 2004, 71, 129–138. [Google Scholar] [CrossRef]
- Beyene, B.; Tolosa, T.; Rufael, T.; Hailu, B.; Teklue, T. Foot and mouth disease in selected districts of western Ethiopia: Seroprevalence and associated risk factors. Rev. Sci. Tech. 2015, 34, 939–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awel, S.M.; Dilba, G.M.; Abraha, B.; Zewde, D.; Wakjira, B.S.; Aliy, A. Seroprevalence and Molecular Detection of Foot and Mouth Disease Virus in Dairy Cattle Around Addis Ababa, Central Ethiopia. Veter. Med. Res. Rep. 2021, 12, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Ayelet, G.; Mahapatra, M.; Gelaye, E.; Egziabher, B.G.; Rufeal, T.; Sahle, M.; Ferris, N.P.; Wadsworth, J.; Hutchings, G.H.; Knowles, N.J. Genetic characterization of foot-and-mouth disease viruses, Ethiopia, 1981–2007. Emerg. Infect. Dis. 2009, 15, 1409–1417. [Google Scholar] [CrossRef]
- Negusssie, H.; Kyule, M.N.; Yami, M. Outbreak investigations and genetic characterization of foot-and-mouth disease virus in Ethiopia in 2008/2009. Trop. Anim. Health Prod. 2010, 43, 235–243. [Google Scholar] [CrossRef]
- Gizaw, D.; Tesfaye, Y.; Wood, B.A.; Di Nardo, A.; Shegu, D.; Muluneh, A.; Bilata, T.; Belayneh, R.; Fentie, A.; Asgdome, H.; et al. Molecular characterization of foot-and-mouth disease viruses circulating in Ethiopia between 2008 and 2019. Transbound. Emerg. Dis. 2020, 67, 2983–2992. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, Y.; Khan, F.; Gelaye, E. Molecular characterization of foot-and-mouth disease viruses collected from Northern and Central Ethiopia during the 2018 outbreak. Veter. World 2020, 13, 542–548. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. Livestock Production Systems Spotlight Ethiopia. FAO, Rome, Italy. 2018. Available online: https://www.fao.org/publications/card/en/c/I8271EN/ (accessed on 15 May 2021).
- MoARD. Livestock Development Master Plan Study; Phase I Report—Data Collection and Analysis. Volume B—Meat Production November 2007; Ministry of Agriculture and Rural Development, Government of Ethiopia: Addis Ababa, Ethiopia, 2007; Volume B. [Google Scholar]
- Jenbere, T.; Etana, M.; Negussie, H. Study on the risk factors of foot and mouth disease in selected districts of Afar Pastoral Area, Northeast Ethiopia. J. Anim. Veter. Adv. 2011, 10, 1368–1372. [Google Scholar] [CrossRef]
- Leta, S.; Mesele, F. Spatial analysis of cattle and shoat population in Ethiopia: Growth trend, distribution and market access. SpringerPlus 2014, 3, 310. Available online: https://springerplus.springeropen.com/articles/10.1186/2193-1801-3-310 (accessed on 19 June 2021). [CrossRef] [Green Version]
- CSA. The Federal Democratic Republic of Ethiopia Central Statistical Agency Volume Vii Report on Crop and Livestock Product Utilization (Private Peasant Holdings, Meher Season). Stat Bull. E VII: 577. 2012. Available online: http//www.csa.gov.et (accessed on 10 May 2021).
- CSA. The Federal Democratic Republic of Ethiopia Central Statistical Agency Agricultural Sample Survey 2016/2017 (2009 E.C). Volume I Report on Area and Production of Major Crops (Private Peasant Holdings, Meherseason), AddisAbaba. Available online: http//www.csa.gov.et (accessed on 15 May 2021).
- Muroga, N.; Kobayashi, S.; Nishida, T.; Hayama, Y.; Kawano, T.; Yamamoto, T.; Tsutsui, T. Risk factors for the transmission of foot-and-mouth disease during the 2010 outbreak in Japan: A case-control study. BMC Veter. Res. 2013, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Wee, S.-H.; Yoon, H.; More, S.; Nam, H.-M.; Moon, O.-K.; Jung, J.-M.; Kim, S.-J.; Kim, C.-H.; Lee, E.-S.; Park, C.-K.; et al. Epidemiological characteristics of the 2002 outbreak of foot-and-mouth disease in the Republic of Korea. Transbound. Emerg. Dis. 2008, 55, 360–368. [Google Scholar] [CrossRef]
- Dukpa, K.; Robertson, I.; Edwards, J.R.; Ellis, T.M.; Tshering, P.; Rinzin, K.; Dahal, N. Risk factors for foot-and-mouth disease in sedentary livestock herds in selected villages in four regions of Bhutan. N. Z. Veter. J. 2011, 59, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.M.; Belsham, G.J. Foot-and-mouth disease: Past, present and future. Veter. Res. 2013, 44, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, R.; Gomes, A.R.; Giridhar, P.; Kowalli, S.; Shivashankar, B.P.; Sudharshana, K.J.; Nagaraj, K.; Sesharao, R.; Mallinath, K.C.; Shankar, B.P.; et al. Epidemiology of foot and mouth disease in Karnataka state, India: A retrospective study. VirusDisease 2014, 25, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Bastos, A.D.S.; Boshoff, C.I.; Keet, D.F.; Bengis, R.G.; Thomson, G.R. Natural Transmission of Foot-and-Mouth Disease Virus between African buffalo (Syncerus caffer) and Impala (Aepyceros melampus) in the Kruger National Park, South Africa. Epidemiol. Infect. 2000, 124, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Humphry, R.W.; Cameron, A.; Gunn, G.J. A practical approach to calculate sample size for herd prevalence surveys. Prev. Veter. Med. 2004, 65, 173–188. [Google Scholar] [CrossRef]
- Nicholson, M.; Butterworth, H. A guide to condition scoring of Zebu cattle, Addis Ababa Ethiopia. Int. Livest. Cent. Afr. 1986, 29, 212–225. [Google Scholar]
- OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; Collect, Submiss Storage Diagnostic Specimens; OIE: Paris, France, 2009. [Google Scholar]
- Callahan, J.D.; Brown, F.; Osorio, F.A.; Sur, J.-H.; Kramer, E.; Long, G.W.; Lubroth, J.; Ellis, S.J.; Shoulars, K.S.; Gaffney, K.L.; et al. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J. Am. Veter. Med. Assoc. 2002, 220, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StataCorp. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP. 2015. Available online: https://www.google.com/search?q=StataCorp.+2015.+Stata+Statistical+Software%3A+Release+14.+College+Station%2C+TX%3A+StataCorp+LP.&source=hp&ei=uwFwYMuSGtGJlwT2066wBQ&iflsig (accessed on 12 March 2021).
- QGIS Developement Team. QGIS Geographic Information System. Open Source Geospatial Foundation. 2009. Available online: http://qgis.osgeo.org (accessed on 15 March 2021).
- Sutmoller, P.; Casas, O.R. Unapparent foot and mouth disease infection (sub-clinical infections and carriers): Implications for control. Rev. Sci. Tech. 2002, 21, 519–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, T.; Younus, M.; Muhmmad, S.A.; Ijaz, M.; Shakoor, A. Some challenges to progressive control of foot and mouth disease in Pakistan—Findings of a pilot survey. Transbound. Emerg. Dis. 2012, 61, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Admassu, B. Report on the Participatory Epidemiological Investigation of FMD in Erzurum Province; Food and Agriculture Organization: Rome, Italy, 2005. [Google Scholar]
- Ghoneim, N.H.; Abdel-Karim, A.-K.M.; El-Shehawy, L.; Abdel-Moein, K.A. Foot and mouth disease in animals in Sharkia governorate—Egypt. Transbound. Emerg. Dis. 2010, 57, 19–21. [Google Scholar] [CrossRef]
- Bronsvoort, B.D.C.; Nfon, C.; Hamman, S.; Tanya, V.; Kitching, R.; Morgan, K. Risk factors for herdsman-reported foot-and-mouth disease in the Adamawa Province of Cameroon. Prev. Veter. Med. 2004, 66, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Desissa, F.; Tura, D.; Mamo, B.; Rufael, T. Epidemiological study on foot and mouth disease in cattle: Seroprevalence and risk factor assessment in kellem wollega, western Ethiopia. Afr. J. Agric. Res. 2014, 9, 1391–1395. [Google Scholar] [CrossRef] [Green Version]
- Ehizibolo, D.O.; Perez, A.M.; Carrillo, C.; Pauszek, S.; AlKhamis, M.; Ajogi, I.; Umoh, J.U.; Kazeem, H.M.; Fabian, A.; Berninger, M.; et al. Epidemiological analysis, serological prevalence and genotypic analysis of foot-and-mouth disease in Nigeria 2008–2009. Transbound. Emerg. Dis. 2014, 61, 500–510. [Google Scholar] [CrossRef]
- Molla, B.; Ayelet, G.; Asfaw, Y.; Jibril, Y.; Ganga, G.; Gelaye, E. Epidemiological study on foot-and-mouth disease in cattle: Seroprevalence and risk factor assessment in South Omo zone, south-western Ethiopia. Transbound. Emerg. Dis. 2010, 57, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Mohamoud, A.; Tessema, E.; Degefu, H. Seroprevalence of bovine foot and mouth disease (FMD) in Awbere and Babille districts of Jijiga zone, Somalia Regional State, Eastern Ethiopia. Afr. J. Microbiol. Res. 2011, 5, 3559–3563. [Google Scholar] [CrossRef]
- Melkamsew, A.T. Sero-prevalence of foot and mouth disease in cattle in Borena Zone, Oromia regional state, Ethiopia ISDS 2018 Conference Abstracts. ISDS Annu. Conf. Proc. 2018, 10, 2–3. [Google Scholar]
- Kibore, B.; Gitao, C.G.; Sangula, A.; Kitala, P. Foot and mouth disease sero-prevalence in cattle in Kenya. J. Vet. Med. Anim. Health 2013, 5, 262–268. [Google Scholar] [CrossRef]
- Duguma, M.; Jibril, Y.; Issa, A.; Hunde, A. Sero-Prevalence of Foot and Mouth Disease of Cattle in Bale Zone, Oromiya Regional State, Ethiopia. Glob. Vet. 2013, 11, 59–64. [Google Scholar] [CrossRef]
- Knowles, N.J.; Samuel, A.R. Molecular epidemiology of foot-and-mouth disease virus. Virus Res. 2003, 91, 65–80. [Google Scholar] [CrossRef]
- Fakai, L.; Faleke, O.; Magaji, A.; Ibitoye, E.; Alkali, B. Seroprevalence of foot and mouth disease virus infection in pigs from Zuru, Nigeria. Veter. World 2015, 8, 865–869. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, K.; Mahapatra, M.; Upadhyaya, S.; Paton, D.J.; Babu, A.; Hutchings, G.; Parida, S. Genetic and antigenic characterization of serotype O FMD viruses from East Africa for the selection of suitable vaccine strain. Vaccine 2017, 35, 6842–6849. [Google Scholar] [CrossRef]
1. Type of Movement | Frequency | Percentage | |
1.1. | Free | 133 | 56 |
1.2. | Semi restricted | 78 | 33 |
1.3. | Restricted | 26 | 11 |
2. Share Pasture with Swine | |||
2.1. | yes | 192 | 81 |
2.2. | no | 45 | 19 |
3. Share Pasture with Domestic Small Ruminants | |||
3.1 | yes | 152 | 64 |
3.2. | no | 85 | 36 |
4. Share Pasture with Different Peasant Association | |||
4.1. | yes | 144 | 61 |
4.2. | no | 93 | 36 |
5. Share Pasture with Wildlife | |||
5.1. | yes | 150 | 63 |
5.2. | no | 87 | 37 |
6. Animal Movement in and out of the Farm | |||
6.1. | yes | 178 | 75 |
6.2. | no | 59 | 25 |
7. Movement of Vehicle and Workers in and out | |||
7.1. | yes | 174 | 73 |
7.2. | no | 63 | 27 |
Vaccinating Personnel | Frequency | Percentage |
---|---|---|
Private | 106 | 45 |
Government | 126 | 53 |
Own | 5 | 2 |
Vaccine Failure | ||
Yes | 59 | 25 |
No | 178 | 75 |
Control Strategy Practiced Once the Outbreak Occurred | |||||
---|---|---|---|---|---|
Occupation of the Respondents | Vaccination | Treatment | Movement Restriction | All Together * | None |
Farmer | 48 (26%) | 128 (69%) | 4 (2%) | 0 (0.0%) | 5 (3%) |
Veterinarian | 15 (29%) | 22 (42%) | 8 (15%) | 7 (13%) | 0 (00%) |
Total | 63 (27%) | 150 (63%) | 12 (5%) | 7 (3%) | 5 (2%) |
Risk Factors | Total Tested Samples | Sero-Positive | Sero-Prevalence (%) | Odds Ratio (95% CI) | p-Value | |
---|---|---|---|---|---|---|
Region | Addis Ababa * | 300 | 53 | 17.7 | - | |
Oromia | 532 | 143 | 26.8 | 4 [3,6] | <0.001 | |
Amhara | 435 | 104 | 23.9 | 2 [1,3] | <0.001 | |
Tigray | 386 | 149 | 38.6 | 3 [2,5] | <0.001 | |
SNNP | 285 | 32 | 11.2 | 0.8 [0.5,1] | 0.36 | |
Age group | Young * | 900 | 152 | 16.9 | - | |
Adult | 1038 | 329 | 31.7 | 2 [1.6,3] | <0.001 | |
Breed | Cross * | 1373 | 377 | 27.4 | ||
Local | 565 | 104 | 18.4 | 0.2 [0.2,0.3] | <0.001 | |
Contact with wild animals | No * | 1765 | 397 | 22.5 | - | |
Yes | 173 | 84 | 48.5 | 5 [5,8] | <0.001 | |
Vaccinated | No * | 1599 | 416 | 26.0 | ||
Yes | 339 | 65 | 19.2 | 2 [1.1,3.3] | 0.001 | |
Production type | Extensive * | 194 | 62 | 31.7 | - | |
Intensive | 793 | 182 | 22.9 | 0.6 [0.4,0.9] | 0.010 | |
Semi intensive | 951 | 237 | 24.9 | 0.7 [0.5,1] | 0.043 |
Risk Factors | Tested | Sero-Positive | Sero-Prevalence (%) | Odds Ratio (95% CI) | p-Value | |
---|---|---|---|---|---|---|
Origin | Abergale * | 38 | 0 | 0 | - | |
Arsi-Bale | 72 | 12 | 16.6 | 3 [1,10] | 0.038 | |
Horo | 99 | 0 | - | |||
Jimma | 95 | 5 | 5.2 | - | ||
Jinka | 122 | 0 | ||||
Borena | 33 | 5 | 15.2 | 3 [1,11] | ||
Somali | 31 | 0 | 0 | - | ||
Age group | Young * | 259 | 4 | 1.5 | - | |
Adult | 231 | 20 | 8.6 | 6 [2,18] | <0.001 | |
Species | Caprine * | 465 | 18 | 3.8 | - | - |
Ovine | 25 | 6 | 24 | 8 [3,22] | <0.001 |
Risk Factors | Total Tested Samples | Sero- Positives | Sero-Prevalence (%) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Districts | |||||
Addis Ababa * | 81 | 7 | 8.6 | - | - |
Alage | 63 | 0 | 0 | ||
Bishoftu | 282 | 0 | 0 | - | |
Sex | |||||
Female * | 268 | 5 | 1.8 | - | - |
Male | 158 | 4 | 2.5 | 1 [0.2,4] | 0.944 |
Age | |||||
Young | 247 | 3 | 1.2 | 0.41 [0.1,2] | 0.229 |
Adult * | 179 | 6 | 3.3 | - | - |
Breed | |||||
Large white | 254 | 4 | 1.6 | 0.5 [0.1,3] | 0.506 |
Duroc | 101 | 3 | 3.0 | 1 [0.14,6] | 0.962 |
Cross * | 71 | 2 | 2.8 | - | - |
Number Positive/Tested | ||||||
---|---|---|---|---|---|---|
State | Location | Sample Type | #Herds Affected | rRT-PCR | VI | Serotype in Ag Elisa |
Oromia | Kuyu | Epithelial tissue | 11 | 15/15 | 5 | A |
Adaa | Epithelial tissue | 11 | 1/1 | 1 | O | |
Dugda | Epithelial tissue | 15 | 3/3 | 3 | A | |
Guduru | Epithelial tissue | 3 | 3/3 | 2 | A | |
Fitche | Epithelial tissue | 3 | 1/1 | 1 | A | |
Mukaturi | Epithelial tissue | 3 | 1/1 | 1 | A | |
Ale | Epithelial tissue +oral swab | 4 | 4/4 | 2 | O | |
Boset | Epithelial tissue | 1 | 1/1 | 0 | ND | |
Amhara | Gonder zuria | Epithelial tissue | 8 | 6/7 | 0 | ND |
Kewet | Epithelial tissue | 9 | 2/2 | 2 | O | |
Tigray | Aseged Tsimbela | swab | 1 | 4/4 | 0 | ND |
Dejen | Epithelial tissue | 1 | 1/1 | 0 | ND | |
Wukro | Epithelial tissue | 2 | 2/2 | 0 | ND | |
SNNP | Getewaa | Epithelial tissue +oral swab | 20 | 2/20 | 2 | O |
Worka | Epithelial tissue +oral swab | 2 | 2/2 | 0 | ND | |
Shashogo | Epithelial tissue +oral swab | 2 | 2/2 | 2 | O | |
Total | 18 | 50/72 | 21/50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldemariyam, F.T.; De Vleeschauwer, A.; Hundessa, N.; Muluneh, A.; Gizaw, D.; Tinel, S.; De Clercq, K.; Lefebvre, D.; Paeshuyse, J. Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020. Agriculture 2022, 12, 49. https://doi.org/10.3390/agriculture12010049
Woldemariyam FT, De Vleeschauwer A, Hundessa N, Muluneh A, Gizaw D, Tinel S, De Clercq K, Lefebvre D, Paeshuyse J. Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020. Agriculture. 2022; 12(1):49. https://doi.org/10.3390/agriculture12010049
Chicago/Turabian StyleWoldemariyam, Fanos Tadesse, Annebel De Vleeschauwer, Nato Hundessa, Ayelech Muluneh, Daniel Gizaw, Susanne Tinel, Kris De Clercq, David Lefebvre, and Jan Paeshuyse. 2022. "Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020" Agriculture 12, no. 1: 49. https://doi.org/10.3390/agriculture12010049
APA StyleWoldemariyam, F. T., De Vleeschauwer, A., Hundessa, N., Muluneh, A., Gizaw, D., Tinel, S., De Clercq, K., Lefebvre, D., & Paeshuyse, J. (2022). Risk Factor Assessment, Sero-Prevalence, and Genotyping of the Virus That Causes Foot-and-Mouth Disease on Commercial Farms in Ethiopia from October 2018 to February 2020. Agriculture, 12(1), 49. https://doi.org/10.3390/agriculture12010049