Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Device and Method
2.2.1. Friction Properties Test
2.2.2. Collision Properties Test
2.2.3. Compression Mechanical Properties Test
3. Results and Discussion
3.1. Results and Analysis of Frictional Properties Tests
3.2. Results and Analysis of Collision Properties Tests
3.2.1. Results and Analysis of Mixed Orthogonal Tests
3.2.2. Results and Analysis of the Single-Factor Test
3.3. Results and Analysis of the Mechanical Properties of Compression
3.3.1. Effect of Loading Speed on Compression Mechanical Properties
3.3.2. Effect of Moisture Content on Compression Mechanical Properties
3.3.3. Effect of Compression Direction on Compression Mechanical Properties
3.3.4. Effect of Variety on Compressive Mechanical Properties
4. Conclusions
- (1)
- The effects of moisture content and friction material on the sliding friction coefficient (0.405–0.652) of the tubers were highly significant (p < 0.01), with no significant effect of variety. The sliding friction coefficient increased with increasing moisture content when the moisture content was between 8% and 40%. The coefficient of friction between the tuber and the polyurethane, plexiglass, aluminium, and steel plates decreased in descending order when the moisture content was the same. The effect of variety and moisture content on the angle of repose (27.96–36.09°) of tubers was significant (p < 0.01); variety 2 had a larger angle of repose than variety 1; and the angle of repose of tubers was positively correlated with moisture content.
- (2)
- The results of the mixed orthogonal test showed that collision material, moisture content, release height, and variety had significant effects(p < 0.01) on the collision recovery coefficients (0.376–0.672) of the tubers. The results of the single-factor test showed that: when the moisture content increased from 8% to 40%, the recovery coefficient first decreased and then increased, and when the moisture content was 16%, the recovery coefficient was the lowest; when the release height increased from 150 mm to 350 mm, the recovery coefficient gradually decreased; when the levels of other factors were the same, the recovery coefficient of the collision between the tuber and the steel, aluminium, plexiglass, and polyurethane decreased in turn; and influenced by the mass and shape, the recovery coefficient of variety 2 was lower than that of variety 1.
- (3)
- Variety, loading speed, moisture content, and compression direction all had a significant effect on the damage force (87.54–214.48 N), deformation (1.25–6.12 mm), and damage energy (82.38–351.08 mJ) of the tubers (p < 0.01), and only moisture content and compression direction had a significant effect on the apparent elastic modulus (12.17~120.88 MPa) of the tubers (p < 0.01). When the level of factors other than the loading speed was fixed, the damage force, deformation, and damage energy all tended to decrease as the loading speed increased (from 5 mm/min to 20 mm/min). When the level of factors other than moisture content was fixed, as the moisture content increased (from 16% to 40%), the damage force and apparent elastic modulus increased, the deformation decreased, and the damage energy generally decreased and then increased. When the levels of factors other than the compression direction were fixed, the damage force and apparent elastic modulus were lower in the vertical direction than in the horizontal direction, while the deformation and damage energy were generally higher than in the horizontal direction. When the levels of factors other than variety were fixed, the damage force and damage energy of variety 2 were generally higher than those of variety 1; variety 2 had a higher deformation in the vertical direction than variety 1 and a lower deformation in the horizontal direction than variety 1.
Author Contributions
Funding
Conflicts of Interest
Appendix A
V | MC/% | Damage Force/N | Deformation/mm | Damage Energy/mJ | Apparent Elastic Modulus/MPa | |||||
---|---|---|---|---|---|---|---|---|---|---|
Vertical | Horizontal | Vertical | Horizontal | Vertical | Horizontal | Vertical | Horizontal | |||
V.1 | 5 | 16 | 113.44 | 153.91 | 4.54 | 3.34 | 155.18 | 161.30 | 23.21 | 45.25 |
24 | 129.37 | 161.19 | 4.07 | 2.54 | 153.98 | 125.17 | 30.68 | 71.35 | ||
32 | 137.36 | 164.65 | 3.58 | 2.51 | 172.53 | 145.70 | 39.35 | 74.57 | ||
40 | 152.98 | 177.47 | 2.64 | 2.25 | 181.32 | 149.65 | 68.12 | 93.47 | ||
10 | 16 | 106.86 | 138.46 | 4.45 | 2.76 | 138.80 | 121.68 | 22.48 | 54.07 | |
24 | 123.62 | 142.27 | 3.84 | 2.42 | 139.44 | 102.66 | 31.96 | 67.75 | ||
32 | 127.89 | 148.80 | 3.25 | 2.37 | 158.94 | 126.63 | 42.24 | 73.52 | ||
40 | 147.45 | 158.20 | 2.37 | 2.18 | 167.42 | 140.59 | 77.10 | 87.49 | ||
15 | 16 | 95.12 | 125.45 | 4.13 | 2.62 | 125.45 | 102.35 | 22.43 | 53.10 | |
24 | 109.53 | 130.09 | 3.74 | 2.41 | 123.41 | 90.62 | 29.53 | 62.58 | ||
32 | 118.57 | 135.04 | 3.48 | 2.14 | 147.91 | 105.88 | 35.40 | 77.46 | ||
40 | 131.85 | 148.40 | 2.16 | 1.68 | 120.81 | 98.14 | 79.63 | 120.88 | ||
20 | 16 | 103.41 | 118.21 | 3.74 | 2.54 | 121.09 | 95.22 | 28.22 | 52.30 | |
24 | 113.48 | 120.35 | 3.88 | 2.34 | 133.16 | 82.38 | 28.93 | 60.47 | ||
32 | 109.96 | 125.84 | 3.26 | 2.07 | 129.85 | 95.60 | 36.24 | 75.82 | ||
40 | 124.03 | 136.93 | 2.07 | 1.25 | 118.92 | 88.28 | 79.79 | 107.54 | ||
V.2 | 5 | 16 | 124.57 | 186.00 | 6.12 | 2.77 | 258.77 | 153.68 | 14.93 | 62.69 |
24 | 140.57 | 194.53 | 5.09 | 2.38 | 257.95 | 136.98 | 22.17 | 83.00 | ||
32 | 157.25 | 214.48 | 4.23 | 2.22 | 347.96 | 169.59 | 32.58 | 101.20 | ||
40 | 172.81 | 213.28 | 4.68 | 1.97 | 351.08 | 177.67 | 34.93 | 119.37 | ||
10 | 16 | 110.03 | 175.07 | 5.87 | 2.59 | 234.19 | 133.76 | 14.05 | 65.22 | |
24 | 135.46 | 179.55 | 4.88 | 2.16 | 243.56 | 126.75 | 22.82 | 88.46 | ||
32 | 154.01 | 187.93 | 4.19 | 1.98 | 304.99 | 136.89 | 32.45 | 104.98 | ||
40 | 155.08 | 200.41 | 3.94 | 1.93 | 295.73 | 156.36 | 35.79 | 115.37 | ||
15 | 16 | 104.74 | 163.32 | 5.81 | 2.68 | 230.10 | 129.60 | 13.60 | 57.75 | |
24 | 118.55 | 172.90 | 4.99 | 2.19 | 219.09 | 107.95 | 19.29 | 83.44 | ||
32 | 144.60 | 177.75 | 3.90 | 1.96 | 277.16 | 129.68 | 33.92 | 100.81 | ||
40 | 146.39 | 182.92 | 3.81 | 1.78 | 253.35 | 139.88 | 35.51 | 119.32 | ||
20 | 16 | 87.54 | 160.56 | 5.56 | 2.55 | 213.04 | 127.95 | 12.17 | 61.20 | |
24 | 101.49 | 168.57 | 4.82 | 2.01 | 188.53 | 104.53 | 17.41 | 92.53 | ||
32 | 115.60 | 169.60 | 4.13 | 1.92 | 214.63 | 105.85 | 24.86 | 99.21 | ||
40 | 140.09 | 173.32 | 3.76 | 1.75 | 222.64 | 120.91 | 34.67 | 115.09 |
References
- Wang, R.Y.; Wang, X.S.; Xiang, H. A multi-purpose novel oil crop—Cyperus Edulis. China Oils Fats 2019, 44, 1–4, (In Chinese with English Abstract). [Google Scholar]
- Zhao, X.Q.; Liu, H.; Lu, Z.Y.; Cheng, Y.C.; Zhang, D.J.; Bai, L.F.; Fang, J.; Du, X.Y.; Ren, Y.F. Cultivation techniques for sand control and sand fixation on sandy degraded land with Cyperus beans. Mod. Agric. 2019, 516, 14–15, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, F.; Zhu, W.X. Research status and prospect of Cyperus esculentus. Cereals Oils 2020, 33, 4–6, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.L.; Wang, X.N.; Shu, Y.; Ma, Y.X. Character and composition of Cyperus esculentus from different origins. China Oils Fats 2020, 45, 125–129, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Fang, Z.X.; Hou, P.L.; Fu, J.; Guo, F.D.; Hou, L.; Ma, D.Y.; Wang, Y. Research progresses of mechanical seeding and harvesting technology and equipment for Saline-Alkali Cyperus esculentus. Shandong Agric. Sci. 2019, 51, 144–148, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Abano, E.E.; Amoah, K.K. Effect of Moisture Content on the Physical Properties of Tiger Nut (Cyperus esculentus). Asian J. Agric. Res. 2011, 5, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, C.; Guo, W.S.; He, X.W.; Wang, X.F.; Jian, J.M.; Hou, S.L. The Effects of Moisture Content and Loading Orientation on Some Physical and Mechanical Properties of Tiger Nut. Am. J. Biochem. Biotechnol. 2021, 17, 109–117. [Google Scholar] [CrossRef]
- Chen, Z.P.; Wassgren, C.; Veikle, E.; Ambrose, K. Determination of material and interaction properties of maize and wheat kernels for DEM simulation. Biosyst. Eng. 2020, 195, 208–226. [Google Scholar] [CrossRef]
- Chandio, F.A.; Li, Y.M.; Ma, Z.; Ahmad, F.; Syed, T.N.; Shaikh, S.A.; Tunio, M.H. Influences of moisture content and compressive loading speed on the mechanical properties of maize grain orientations. Int. J. Agric. Biol. Eng. 2021, 14, 41–49. [Google Scholar] [CrossRef]
- Feng, B.; Sun, W.; Shi, L.R.; Sun, B.G.; Zhang, T.; Wu, J.M. Determination of restitution coefficient of potato tubers collision in harvest and analysis of its influence factors. Trans. CSAE 2017, 33, 50–57, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, W.Z.; He, J.; Li, H.W.; Li, X.Q.; Zheng, K.; Wei, Z.C. Calibration of simulation parameters for potato minituber based on EDEM. Trans. CSAM 2018, 49, 125–135, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Meng, J.G.; Wang, C.G.; Xie, S.S.; Deng, W.G.; Qi, S.H.; Li, J. Test and analysis of restitution coefficient of potato. J. China Agric. Univ. 2017, 22, 93–100, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Sun, J.X.; Yang, Z.M.; Guo, Y.M.; Cui, Q.L.; Wu, X.H.; Zhang, Y.Q. Compression mechanical properties and crack formation law of millet grain. Trans. CSAE 2017, 33, 306–314, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, L.X.; Jiao, W.P.; Yang, D.X.; Shao, Z.G.; Zhao, X.G.; Liu, D.J. Effect of oisture content on mechanical properties of soybean seed under static pressure. Trans. CSAE 2012, 28, 40–44, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Arslan, S.; Vursavus, K.K. Physico-Mechanical Properties of Almond Nut and Its Kernel as a Function of Variety and Moisture Content. Philipp. Agric. 2009, 91, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Shen, L.Y.; Lan, H.P.; Li, Y.; Liu, Y.; Tang, Y.R.; Li, W. Mechanical properties and finite element analysis of walnut under different cracking parts. Int. J. Agric. Biol. Eng. 2018, 11, 81–88. [Google Scholar] [CrossRef] [Green Version]
- He, J.C.; Tao, Z.Y.; Liang, S.H.; Ye, D.P. Compression and shearing force on kernel rupture in shelling fresh lotus seeds. Int. J. Agric. Biol. Eng. 2021, 14, 237–242. [Google Scholar] [CrossRef]
- Kamst, G.F.; Bonazzi, C.; Vasseur, J.; Bimbenet, J.J. Effect of deformation rate and moisture content on the mechanical properties of rice grains. Trans. ASAE 2002, 45, 145–151. [Google Scholar] [CrossRef]
- Na, X.J.; Liu, M.G.; Zhang, W.; Li, F.; Du, X.; Gao, L.X. Damage characteristics and regularity of peanut kernels under mechanical shelling. Trans. CSAE 2010, 5, 117–121, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jing, S.Q.; Wang, S.S.; Li, Q.; Zheng, L.; Yue, L.; Fan, S.L.; Tao, G.Y. Dynamic high pressure microfluidization-assisted extraction and bioactivities of Cyperus esculentus (C. esculentus L.) leaves flavonoids. Food Chem. 2016, 192, 319–327. [Google Scholar] [CrossRef]
- Hu, B.; Zhou, K.; Liu, Y.T.; Liu, A.P.; Zhang, Q.; Han, G.Q. Optimization of microwave-assisted extraction of oil from tiger nut (Cyperus esculentus L.) and its quality evaluation. Ind. Crops Prod. 2018, 115, 290–297. [Google Scholar] [CrossRef]
- Liu, H.M.; Yan, Y.Y.; Liu, X.X.; Ma, Y.X.; Wang, X.D. Effects of various oil extraction methods on the gelatinization and retrogradation properties of starches isolated from tigernut (Cyperus esculentus) tuber meals. Int. J. Biol. Macromol. 2020, 156, 144–152. [Google Scholar] [CrossRef]
- Asante, F.A.; Ellis, W.O.; Oduro, I.; Saalia, F.K. Effect of Soaking and Cooking Methods on Extraction of Solids and Acceptability of Tiger Nut (Cyperus Esculentus L.) Milk. J. Agric. Stud. 2014, 2, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Gasparre, N.; Pan, J.; Alves, P.L.D.S.; Rosell, C.M.; Berrios, J.D.J. Tiger Nut (Cyperus esculentus) as a Functional Ingredient in Gluten-Free Extruded Snacks. Foods 2020, 9, 1770. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, N.; Albanell, E.; Miñarro, B.; Guamis, B.; Capellas, M. Effect of tiger nut-derived products in gluten-free batter and bread. Food Sci. Technol. Int. 2015, 21, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.S.; Hussein, A.M.S. Exploring the Suitability of Incorporating Tiger Nut Flour as Novel Ingredient in Gluten-Free Biscuit. Pol. J. Food Nutr. Sci. 2014, 64, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Kizzie-Hayford, N.; Dabie, K.; Kyei-Asante, B.; Ampofo-Asiama, J.; Zahn, S.; Jaros, D.; Rohm, H. Storage temperature of tiger nuts (Cyperus esculentus L.) affects enzyme activity, proximate composition and properties of lactic acid fermented tiger nut milk thereof. LWT 2021, 137. [Google Scholar] [CrossRef]
- Yao, N.J.C.; Augustin, A.A.; Niamke, B.F.; Adje, A.F. Composition of Fatty Acids, Total Sterols and Total Polyphenol Content of the Oils of Six Oilseeds in Côte d’Ivoire. Asian Food Sci. J. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Ezeh, O.; Gordon, M.H.; Niranjan, K. Enhancing the recovery of tiger nut (Cyperus esculentus) oil by mechanical pressing: Moisture content, particle size, high pressure and enzymatic pre-treatment effects. Food Chem. 2016, 194, 354–361. [Google Scholar] [CrossRef]
- Okorie, S.U.; Adedokun, I.I.; Duru, N.H. Effect of Blending and Storage Conditions on the Microbial Quality and Sensory Characteristics of Soy-Tiger Nut Milk Beverage. Food Sci. Qual. Manag. 2014, 31, 96–103. [Google Scholar]
- Bezuidenhout, S.R.; Reinhardt, C.F.; Whitwell, M.I. Cover crops of oats, stooling rye and three annual ryegrass cultivars influence maize and Cyperus esculentus growth. Weed Res. 2012, 52, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Wang, L.; Wang, G.R.; Zhang, A.Q.; Wang, X.B.; Jiang, L.Z. Ultrasonication effects on physicochemical and emulsifying properties of Cyperus esculentus seed (tiger nut) proteins. LWT 2021, 142. [Google Scholar] [CrossRef]
- Shrestha, U.; Rosskopf, E.N.; Butler, D.M. Effect of anaerobic soil disinfestation amendment type and C:N ratio on Cyperus esculentus tuber sprouting, growth and reproduction. Weed Res. 2018, 58, 379–388. [Google Scholar] [CrossRef]
- Chloe, J. P29 The in vitro use of natural antioxidant oils (Cyperus esculentus; Nigella sativa) to reduce cell sickling in sickle cell anaemia. Biochem. Pharmacol. 2017, 139, 134. [Google Scholar] [CrossRef]
- Jia, H.L.; Deng, J.Y.; Deng, Y.L.; Chen, T.Y.; Wang, G.; Sun, Z.J.; Guo, H. Contact parameter analysis and calibration in discrete element simulation of rice straw. Int. J. Agric. Biol. Eng. 2021, 14, 72–81. [Google Scholar] [CrossRef]
- Shi, L.R.; Ma, Z.T.; Zhao, W.Y.; Yang, X.P.; Sun, B.G.; Zhang, J.P. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test. Trans. CSAE 2019, 35, 25–33, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Variety | Moisture Content/% | Triaxial Size/mm | 1000 Grain Weight/g | Bulk Density/(g·cm−3) | Sphericity/% | ||
---|---|---|---|---|---|---|---|
Length | Width | Thickness | |||||
V.1 | 8 | 14.51 | 13.90 | 10.71 | 1072.72 | 9.31 | 89.09 |
16 | 15.44 | 14.52 | 10.89 | 1230.14 | 9.21 | 87.21 | |
24 | 15.58 | 14.78 | 11.61 | 1318.58 | 9.13 | 89.08 | |
32 | 15.61 | 14.75 | 11.80 | 1505.98 | 9.12 | 89.39 | |
40 | 16.03 | 15.13 | 12.24 | 1658.93 | 9.08 | 89.66 | |
V.2 | 8 | 21.65 | 14.12 | 11.29 | 1606.40 | 9.52 | 69.80 |
16 | 23.01 | 14.27 | 11.43 | 1800.48 | 9.36 | 67.54 | |
24 | 23.19 | 14.56 | 12.18 | 2097.73 | 9.38 | 69.09 | |
32 | 23.22 | 14.57 | 12.57 | 2290.58 | 9.35 | 69.77 | |
40 | 23.95 | 14.93 | 12.61 | 2544.08 | 9.24 | 68.98 |
Level | Moisture Content/% | Collision Material | Release Height/mm | Variety |
---|---|---|---|---|
1 | 16 | Steel | 170 | V.1 |
2 | 24 | Aluminium | 220 | V.2 |
3 | 32 | Plexiglass | 270 | / |
4 | 40 | Polyurethane | 320 | / |
Level | Moisture Content/% | Loading Speed/(mm·min−1) | Compression Direction | Variety |
---|---|---|---|---|
1 | 16 | 5 | Vertical | V.1 |
2 | 24 | 10 | Horizontal | V.2 |
3 | 32 | 15 | / | / |
5 | 40 | 20 | / | / |
V | MC/% | Sliding Coefficient Friction | AOR/° | |||
---|---|---|---|---|---|---|
Steel | Aluminium | Plexiglass | Polyurethane | |||
V.1 | 8 | 0.434 | 0.458 | 0.494 | 0.499 | 27.96 |
16 | 0.459 | 0.480 | 0.529 | 0.560 | 28.89 | |
24 | 0.498 | 0.514 | 0.571 | 0.591 | 30.11 | |
32 | 0.540 | 0.555 | 0.621 | 0.632 | 33.43 | |
40 | 0.573 | 0.613 | 0.640 | 0.646 | 35.82 | |
V.2 | 8 | 0.405 | 0.449 | 0.507 | 0.527 | 30.31 |
16 | 0.465 | 0.484 | 0.532 | 0.564 | 31.58 | |
24 | 0.506 | 0.526 | 0.565 | 0.605 | 33.17 | |
32 | 0.528 | 0.537 | 0.606 | 0.613 | 34.45 | |
40 | 0.581 | 0.601 | 0.632 | 0.652 | 36.09 |
Source of Variance | Sliding Coefficient Friction | Angle of Repose | ||
---|---|---|---|---|
F Value | p Value | F Value | p Value | |
Variety | 0.945 | 0.3385 | 54.272 | <0.0001 ** |
Moisture content | 11.357 | <0.0001 ** | 94.587 | <0.0001 ** |
Friction material | 7.150 | <0.0009 ** | / | / |
Variety | Material | Fitting Function | R2 |
---|---|---|---|
V.1 | Steel | 0.994 | |
Aluminium | 0.970 | ||
Plexiglass | 0.986 | ||
Polyurethane | 0.958 | ||
V.2 | Steel | 0.979 | |
Aluminium | 0.964 | ||
Plexiglass | 0.994 | ||
Polyurethane | 0.970 |
Test Number | MC | Collision Material | Release Height | V | Null Column | COR/° |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 0.503 |
2 | 1 | 2 | 2 | 1 | 1 | 0.498 |
3 | 1 | 3 | 3 | 2 | 2 | 0.416 |
4 | 1 | 4 | 4 | 2 | 2 | 0.404 |
5 | 2 | 1 | 2 | 2 | 2 | 0.525 |
6 | 2 | 2 | 1 | 2 | 2 | 0.487 |
7 | 2 | 3 | 4 | 1 | 1 | 0.408 |
8 | 2 | 4 | 3 | 1 | 1 | 0.376 |
9 | 3 | 1 | 3 | 1 | 2 | 0.619 |
10 | 3 | 2 | 4 | 1 | 2 | 0.595 |
11 | 3 | 3 | 1 | 2 | 1 | 0.439 |
12 | 3 | 4 | 2 | 2 | 1 | 0.416 |
13 | 4 | 1 | 4 | 2 | 1 | 0.672 |
14 | 4 | 2 | 3 | 2 | 1 | 0.637 |
15 | 4 | 3 | 2 | 1 | 2 | 0.456 |
16 | 4 | 4 | 1 | 1 | 2 | 0.396 |
Source of Variance | DOF | Mean Square | F Value | p Value |
---|---|---|---|---|
Variety | 3 | 0.0082 | 103.414 | <0.0001 ** |
Collision material | 3 | 0.0324 | 407.857 | <0.0001 ** |
Release height | 3 | 0.0037 | 46.561 | 0.0004 ** |
Variety | 1 | 0.0013 | 16.558 | 0.0096 ** |
Source of Variance | Damage Force | Deformation | Damage Energy | Apparent Elastic Modulus | ||||
---|---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | |
V | 255.164 | <0.0001 ** | 251.172 | <0.0001 ** | 573.150 | <0.0001 ** | 3.515 | 0.0611 |
LS | 72.560 | <0.0001 ** | 27.271 | <0.0001 ** | 77.151 | <0.0001 ** | 1.034 | 0.3765 |
MC | 42.238 | <0.0001 ** | 265.070 | <0.0001 ** | 17.969 | <0.0001 ** | 172.592 | <0.0001 ** |
CD | 371.794 | <0.0001 ** | 2711.360 | <0.0001 ** | 714.910 | <0.0001 ** | 1275.462 | <0.0001 ** |
V × LS | 0.722 | 0.5387 | 0.883 | 0.4491 | 2.105 | 0.09785 | 0.300 | 0.8258 |
V × MC | 5.451 | 0.0010 ** | 16.120 | <0.0001 ** | 9.291 | <0.0001 ** | 18.425 | <0.0001 ** |
V × CD | 103.218 | <0.0001 ** | 420.232 | <0.0001 ** | 228.625 | <0.0001 ** | 240.637 | <0.0001 ** |
LS × MC | 1.072 | 0.3806 | 1.405 | 0.1809 | 2.737 | 0.0036 ** | 0.991 | 0.4454 |
LS × CD | 3.293 | 0.0199 * | 0.197 | 0.8987 | 1.781 | 0.1488 | 1.438 | 0.2299 |
MC × CD | 13.698 | <0.0001 ** | 43.888 | <0.0001 ** | 8.812 | <0.0001 ** | 10.790 | <0.0001 ** |
V × LS × MC | 0.636 | 0.7669 | 0.933 | 0.4954 | 1.135 | 0.3346 | 1.979 | 0.0384 * |
V × LS × CD | 3.267 | 0.0206 * | 0.752 | 0.5210 | 5.821 | 0.0006 ** | 0.451 | 0.7166 |
V × MC × CD | 1.422 | 0.2289 | 9.051 | <0.0001 ** | 2.948 | 0.0318 * | 14.758 | <0.0001 ** |
LS × MC × CD | 0.605 | 0.7938 | 1.000 | 0.4377 | 0.797 | 0.6193 | 1.131 | 0.3371 |
V × LS × MC × CD | 1.267 | 0.2505 | 1.398 | 0.1837 | 0.439 | 0.9144 | 2.657 | 0.0047 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Fu, J.; Zhang, R.; Zhang, Y.; Yuan, H. Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers. Agriculture 2022, 12, 65. https://doi.org/10.3390/agriculture12010065
Zhang S, Fu J, Zhang R, Zhang Y, Yuan H. Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers. Agriculture. 2022; 12(1):65. https://doi.org/10.3390/agriculture12010065
Chicago/Turabian StyleZhang, Shengwei, Jun Fu, Ruiyu Zhang, Yan Zhang, and Hongfang Yuan. 2022. "Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers" Agriculture 12, no. 1: 65. https://doi.org/10.3390/agriculture12010065
APA StyleZhang, S., Fu, J., Zhang, R., Zhang, Y., & Yuan, H. (2022). Experimental Study on the Mechanical Properties of Friction, Collision and Compression of Tiger Nut Tubers. Agriculture, 12(1), 65. https://doi.org/10.3390/agriculture12010065