Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Biometry Assessments and Visual Observation of Symptoms
2.3. Extraction and Quantification of Photosynthetic Pigments
2.4. Quantification of Lipid Peroxidation (LP)
2.5. Detection and Quantification of H2O2
2.6. Extraction and Quantification of Soluble Proteins
2.7. Assessment of AOX Responses
2.7.1. Total Phenols
2.7.2. Glutathione (GSH)
2.7.3. Proline (Pro)
2.7.4. Ascorbate-Reduced (AsA) and Oxidized (DHA) Forms
2.7.5. Estimation of the Total Antioxidant Capacity (TAC)
2.7.6. Measurement of AOX Enzymes’ Activity
2.8. Statistical Analysis
3. Results
3.1. AsA Supply Affected Plant Growth and Redox Homeostasis but Alleviated the Phytotoxicity Induced by Nano-NiO
3.2. AsA Supplementation Stimulated the AOX System
4. Discussion
4.1. In Vitro Administration of Nano-NiO Causes Phytotoxic Effects on Tomato Seedlings
4.2. AsA Supply Helps to Alleviate the Phytotoxicity Induced by Nano-NiO
4.3. Unstressed Tomato Seedlings Show a Negative Response to AsA Supplementation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, M.R.; Lowry, G.V.; Alvarez, P.; Dionysiou, D.; Biswas, P. Environmental Science and Technology; ACS Publications: Washington, DC, USA, 2006; pp. 4336–4345. [Google Scholar]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An Introduction to Nanotechnology. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. [Google Scholar]
- Nowack, B.; Bucheli, T.D. Occurrence, Behavior and Effects of Nanoparticles in the Environment. Environ. Pollut. 2007, 150, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T. Fate and Transport of Engineered Nanoparticles as an Emerging Agricultural Contaminant; Springer: Berlin/Heidelberg, Germany, 2021; Volume 50, pp. 283–308. [Google Scholar] [CrossRef]
- Pacheco, I.; Buzea, C. Nanoparticle Interaction with Plants. In Nanoscience and Plant–Soil Systems; Springer: Berlin/Heidelberg, Germany, 2017; Volume 48, pp. 323–355. [Google Scholar]
- Conway, J.R.; Beaulieu, A.L.; Beaulieu, N.L.; Mazer, S.J.; Keller, A.A. Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant. ACS Nano 2015, 9, 11737–11749. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, Q. Synthesis of NiO/Ag Nancomposites by Micro-Emulsion Method and the Capacitance Performance as Electrodes. J. Mater. Sci. Mater. Electron. 2016, 27, 4752–4759. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, Y.; Liu, A.; Song, L.; Zhao, Z. The NiO Electrode Materials in Electrochemical Capacitor: A Review. Mater. Sci. Semicond. Processing 2019, 96, 78–90. [Google Scholar] [CrossRef]
- Soares, C.; Branco-Neves, S.; de Sousa, A.; Pereira, R.; Fidalgo, F. Ecotoxicological Relevance of Nano-NiO and Acetaminophen to Hordeum vulgare L.: Combining Standardized Procedures and Physiological Endpoints. Chemosphere 2016, 165, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.; Cunha, A.; Soares, C.; Branco-neves, S.; de Sousa, A.; Azenha, M.; Cunha, A. SiO2 Nanomaterial as a Tool to Improve Hordeum vulgare L. Tolerance to Nano-NiO Stress. Sci. Total Environ. 2018, 622, 517–525. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Kavroulakis, N.; Avramidou, M.; Papadopoulou, K.K.; Tsaniklidis, G.; Chrysikopoulos, C.V. Metal Nanoparticles: Phytotoxicity on Tomato and Effect on Symbiosis with the Fusarium Solani FsK Strain. Sci. Total Environ. 2021, 787, 147606. [Google Scholar] [CrossRef]
- Khodakovskaya, M. New Advances in Understanding of Carbon Nanotubes-Plant Interactions. In In Vitro Cellular & Developmental Biology-Animal; Springer: Berlin/Heidelberg, Germany, 2012; Volume 48, pp. 2–3. [Google Scholar]
- Manna, I.; Bandyopadhyay, M. Engineered Nickel Oxide Nanoparticle Causes Substantial Physicochemical Perturbation in Plants. Front. Chem. 2017, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Soares, C.; Pereira, R.; Fidalgo, F. Metal-Based Nanomaterials and Oxidative Stress in Plants: Current Aspects and Overview. In Phytotoxicity of Nanoparticles; Springer: Cham, Switzerland, 2018; pp. 197–227. [Google Scholar]
- Zhu, Y.; Xu, F.; Liu, Q.; Chen, M.; Liu, X.; Wang, Y.; Sun, Y.; Zhang, L. Nanomaterials and Plants: Positive Effects, Toxicity and the Remediation of Metal and Metalloid Pollution in Soil. Sci. Total Environ. 2019, 662, 414–421. [Google Scholar] [CrossRef]
- Jośko, I.; Oleszczuk, P.; Futa, B. The Effect of Inorganic Nanoparticles (ZnO, Cr2O3, CuO and Ni) and Their Bulk Counterparts on Enzyme Activities in Different Soils. Geoderma 2014, 232, 528–537. [Google Scholar] [CrossRef]
- Ameen, N.; Amjad, M.; Murtaza, B.; Abbas, G.; Shahid, M.; Imran, M.; Naeem, M.A.; Niazi, N.K. Biogeochemical Behavior of Nickel under Different Abiotic Stresses: Toxicity and Detoxification Mechanisms in Plants. Environ. Sci. Pollut. Res. 2019, 26, 10496–10514. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Huang, D.; Liu, J. Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects. Clean–Soil Air Water 2009, 37, 304–313. [Google Scholar] [CrossRef]
- Sachan, P.; Lal, N. An Overview of Nickel (Ni2+) Essentiality, Toxicity and Tolerance Strategies in Plants. Asian J. Biol. 2017, 2, 1–15. [Google Scholar] [CrossRef]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Spormann, S.; Soares, C.; Martins, V.; Azenha, M.; Gerós, H.; Fidalgo, F. Early Activation of Antioxidant Responses in Ni-Stressed Tomato Cultivars Determines Their Resilience Under Co-Exposure to Drought. J. Plant Growth Regul. 2022. [Google Scholar] [CrossRef]
- Pinto, M.; Soares, C.; Santos, A.; Fidalgo, F. Phytotoxic Effects of Bulk and Nano-Sized Ni on Lycium barbarum L. Grown in Vitro—Oxidative Damage and Antioxidant Response. Chemosphere 2019, 218, 507–516. [Google Scholar] [CrossRef]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Cheema, S.A.; Fahad, S.; Rehman, S.; Sharma, A. Nickel; Whether Toxic or Essential for Plants and Environment - A Review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Gomes-Junior, R.A.; Moldes, C.A.; Delite, F.S.; Gratão, P.L.; Mazzafera, P.; Lea, P.J.; Azevedo, R.A. Nickel Elicits a Fast Antioxidant Response in Coffea arabica Cells. Plant Physiol. Biochem. 2006, 44, 420–429. [Google Scholar] [CrossRef]
- Hussain, A.; Qarshi, I.A.; Nazir, H.; Ullah, I. In Recent Advances in Plant In Vitro Culture; Books on Demand: Norderstedt, Germany, 2012; pp. 1–28. [Google Scholar]
- Abdelwahd, R.; Hakam, N.; Labhilili, M.; Udupa, S.M. Use of an Adsorbent and Antioxidants to Reduce the Effects of Leached Phenolics in in vitro Plantlet Regeneration of Faba Bean. Afr. J. Biotechnol. 2008, 7, 997–1002. [Google Scholar]
- Soares, C.; Carvalho, M.E.A.; Azevedo, R.A.; Fidalgo, F. Plants Facing Oxidative Challenges—A Little Help from the Antioxidant Networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- Khan, T.; Mazid, M.; Mohammad, F. A Review of Ascorbic Acid Potentialities against Oxidative Stress Induced in Plants. J. Agrobiol. 2012, 28, 97–111. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, B. In Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer: Cham, Switzerland, 2017; pp. 233–253. [Google Scholar]
- Zhang, K.; Wang, G.; Bao, M.; Wang, L.; Xie, X. Exogenous Application of Ascorbic Acid Mitigates Cadmium Toxicity and Uptake in Maize (Zea mays L.). Environ. Sci. Pollut. Res. 2019, 26, 19261–19271. [Google Scholar]
- Zhou, Z.; Wei, C.; Liu, H.; Jiao, Q.; Li, G.; Zhang, J.; Zhang, B.; Jin, W.; Lin, D.; Chen, G.; et al. Exogenous Ascorbic Acid Application Alleviates Cadmium Toxicity in Seedlings of Two Wheat (Triticum aestivum L.) Varieties by Reducing Cadmium Uptake and Enhancing Antioxidative Capacity. Environ. Sci. Pollut. Res. 2022, 29, 21739–21750. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Siddique, A.; Ashraf, M.A.; Rasheed, R.; Ibrahim, M.; Iqbal, M.; Akbar, S.; Imran, M. Does Exogenous Application of Ascorbic Acid Modulate Growth, Photosynthetic Pigments and Oxidative Defense in Okra (Abelmoschus esculentus (L.) Moench) under Lead Stress? Acta Physiol Plant. 2017, 39, 1–13. [Google Scholar] [CrossRef]
- Alamri, S.A.; Siddiqui, M.H.; Al-Khaishany, M.Y.Y.; Nasir Khan, M.; Ali, H.M.; Alaraidh, I.A.; Alsahli, A.A.; Al-Rabiah, H.; Mateen, M. Ascorbic Acid Improves the Tolerance of Wheat Plants to Lead Toxicity. J. Plant Interact. 2018, 13, 409–419. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Ali, H.M.; Kushwaha, B.K.; Al-Huqail, A.A.; Singh, V.P.; Siddiqui, M.H. Ascorbic Acid Is Essential for Inducing Chromium (VI) Toxicity Tolerance in Tomato Roots. J. Biotechnol. 2020, 322, 66–73. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 472–497. [Google Scholar] [CrossRef]
- Soares, C.F. Assessing the Ecotoxicity of NiO Nanomaterial and Acetaminophen to Barley and the Beneficial Effects of SiO2 Nanomaterial Co-Application. Master’s Thesis, Faculty of Sciences of the University of Porto, Porto, Portugal, 2016. [Google Scholar]
- Ortiz-Espín, A.; Sánchez-Guerrero, A.; Sevilla, F.; Jiménez, A. Ascorbic Acid in Plant Growth, Development and Stress Tolerance; Springer: Cham, Switzerland, 2017; pp. 25–45. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzym. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The Effect of Drought and Ultraviolet Radiation on Growth and Stress Markers in Pea and Wheat. Plant Cell Env. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Rodríguez-Serrano, M.; Romero-Puertas, M.C.; del Rio, L.A. Imaging of Reactive Oxygen Species and Nitric Oxide In Vivo in Plant Tissues. Methods Enzym. 2008, 440, 397–409. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zafar, H.; Ali, A.; Ali, J.S.; Haq, I.U.; Zia, M. Effect of ZnO Nanoparticles on Brassica Nigra Seedlings and Stem Explants: Growth Dynamics and Antioxidative Response. Front. Plant Sci. 2016, 7, 535. [Google Scholar] [CrossRef]
- Soares, C.; Pereira, R.; Spormann, S.; Fidalgo, F. Is Soil Contamination by a Glyphosate Commercial Formulation Truly Harmless to Non-Target Plants? – Evaluation of Oxidative Damage and Antioxidant Responses in Tomato. Environ. Pollut. 2019, 247, 256–265. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Gillespie, K.M.; Ainsworth, E.A. Measurement of Reduced, Oxidized and Total Ascorbate Content in Plants. Nat. Protoc. 2007, 2, 871–874. [Google Scholar] [CrossRef]
- Donahue, J.L.; Okpodu, C.M.; Cramer, C.L.; Grabau, E.A.; Alscher, R.G. Responses of Antioxidants to Paraquat in Pea Leaves. Plant Physiol. 1997, 113, 249–257. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Soares, C.; Nadais, P.; Sousa, B.; Pinto, E.; Ferreira, I.M.; Pereira, R.; Fidalgo, F. Silicon Improves the Redox Homeostasis to Alleviate Glyphosate Toxicity in Tomato Plants—Are Nanomaterials Relevant? Antioxidants 2021, 10, 1320. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Murshed, R.; Lopez-Lauri, F.; Sallanon, H. Microplate Quantification of Enzymes of the Plant Ascorbate-Glutathione Cycle. Anal. Biochem. 2008, 383, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Saquib, Q.; Alatar, A.A.; Al-Khedhairy, A.A.; Hegazy, A.K.; Musarrat, J. Phytotoxic Hazards of NiO-Nanoparticles in Tomato: A Study on Mechanism of Cell Death. J. Hazard. Mater. 2013, 250, 318–332. [Google Scholar] [CrossRef]
- Soares, C.; Branco-Neves, S.; de Sousa, A.; Teixeira, J.; Pereira, R.; Fidalgo, F. Can Nano-SiO2 Reduce the Phytotoxicity of Acetaminophen?—A Physiological, Biochemical and Molecular Approach. Environ. Pollut. 2018, 241, 900–911. [Google Scholar] [CrossRef]
- Alayafi, A.A.M. Exogenous Ascorbic Acid Induces Systemic Heat Stress Tolerance in Tomato Seedlings: Transcriptional Regulation Mechanism. Environ. Sci. Pollut. Res. 2020, 27, 19186–19199. [Google Scholar] [CrossRef]
- Hanafy, R.S.; Ahmed, A.H.M. Alleviation of Copper Stress on Tomato (Lycopersicon esculentum Var. Castel Rock ) Plants Using Ascorbic Acid. Egypt. J. Exp. Biol. 2017, 13, 197–208. [Google Scholar] [CrossRef]
- Shabana, A.; Ahmed, H.; El-Awady, A. Alleviate the Adverse Effects of Some Heavy Metals and Improve Quality and Storability of Tomato and Kidney Bean Plants Grown Under Pollution Conditions. J. Plant Prod. 2012, 3, 1–15. [Google Scholar] [CrossRef]
- Athar, H.R.; Khan, A.; Ashraf, M. Inducing Salt Tolerance in Wheat by Exogenously Applied Ascorbic Acid through Different Modes. J. Plant Nutr. 2009, 32, 1799–1817. [Google Scholar] [CrossRef]
- Athar, H.R.; Khan, A.; Ashraf, M. Exogenously Applied Ascorbic Acid Alleviates Salt-Induced Oxidative Stress in Wheat. Env. Exp. Bot. 2008, 63, 224–231. [Google Scholar] [CrossRef]
- Imai, T.; Kingston-Smith, A.H.; Foyer, C.H. Ascorbate Metabolism in Potato Leaves Supplied with Exogenous Ascorbate. Free Radic. Res. 1999, 31, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.F.; Peng, X.F.; Han, X.; Ren, J.; Zhan, K.Y.; Zhu, M. The Stress Factor, Exogenous Ascorbic Acid, Affects Plant Growth and the Antioxidant System in Arabidopsis thaliana. Russ. J. Plant Physiol. 2014, 61, 467–475. [Google Scholar] [CrossRef]
- Hamada, A.; Al-Hakimi, A. Exogenous Ascorbic Acid or Thiamine Increases the Resistance of Sunflower and Maize Plants to Salt Stress. Acta Agron. Hung. 2009, 57, 335–347. [Google Scholar] [CrossRef]
- Sakr, M.T.; El-Sarkassy, N.M.; Fuller, M.P. Minimization the Effects of Salt Stress on Sweet Pepper Plants by Exogenous Protectants Application. Zagazig J. Agric. Bot. 2015, 42, 1397–1410. [Google Scholar]
- Dolatabadian, A.; Modarres Sanavy, S.A.M.; Sharifi, M. Alleviation of Water Deficit Stress Effects by Foliar Application of Ascorbic Acid on Zea mays L. J. Agron. Crop Sci. 2009, 195, 347–355. [Google Scholar] [CrossRef]
- Dolatabadian, A.; Modarres Sanavy, S.A.M.; Asilan, K.S. Deficit Stress Conditions. Not. Sci. Biol. 2010, 2, 45–50. [Google Scholar] [CrossRef]
- Malik, S.; Ashraf, M.; Arshad, M.; Malik, T.A. Effect of Ascorbic Acid Application on Physiology of Wheat under Drought Stress. Not. Sci. Biol. 2015, 52, 209–217. [Google Scholar]
- Noman, A.; Ali, S.; Naheed, F.; Ali, Q.; Farid, M.; Irshad, M.K. Foliar Application of Ascorbate Enhances the Physiological and Biochemical Attributes of Maize (Zea mays L.) Cultivars under Drought Stress. Arch. Agron. Soil Sci. 2015, 61, 1659–1672. [Google Scholar] [CrossRef]
- Hafez, E.M.; Gharib, H.S. Effect of Exogenous Application of Ascorbic Acid on Physiological and Biochemical Characteristics of Wheat under Water Stress. Int. J. Plant Prod. 2016, 10, 579–596. [Google Scholar] [CrossRef]
- Elkelish, A.; Qari, S.H.; Mazrou, Y.S.A.; Abdelaal, K.A.A. Exogenous Ascorbic Acid Induced Chilling Tolerance in Tomato Plants Through Modulating Metabolism. Plants 2020, 9, 431. [Google Scholar] [CrossRef]
- Pehlivan, F.E. Effects of Exogenously Applied Ascorbic Acid on Red Cabbage Cotyledons Subjected to Copper Excess. Fresenius Environ. Bull. 2014, 23, 1812–1815. [Google Scholar]
- Chaparzadeh, N.; Chagharlou, M.G. Alleviation of Adverse Effects of Copper on Allium cepa L. by Exogenous Ascorbic Acid Application. J. Plant Physiol. Breed. 2013, 3, 1–12. [Google Scholar]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. Synergistic Effects of Drought and Ascorbic Acid on Growth, Mineral Nutrients and Oxidative Defense System in Canola (Brassica napus L.) Plants. Acta Physiol. Plant 2014, 36, 1539–1553. [Google Scholar] [CrossRef]
- Henschel, J.M.; De Azevedo Soares, V.; Figueiredo, M.C.; Dos Santos, S.K.; Dias, T.J.; Batista, D.S. Radish (Raphanus sativus L.) Growth and Gas Exchange Responses to Exogenous Ascorbic Acid and Irrigation Levels. Vegetos 2022. [Google Scholar] [CrossRef]
- Córdoba, F.; González-Reyes, J.A. Ascorbate and Plant Cell Growth. J. Bioenerg. Biomembr. 1994, 26, 399–405. [Google Scholar] [CrossRef]
- Hidalgo, A.; Gonzalez-Reyes, J.A.; Navas, P. Ascorbate Free Radical Enhances Vacuolization in Onion Root Meristems. Plant Cell Env. 1989, 12, 455–460. [Google Scholar] [CrossRef]
- Li, X.; Makavitskaya, M.; Samokhina, V.; Mackievic, V.; Navaselsky, I.; Hryvusevich, P.; Smolikova, G.; Medvedev, S.; Shabala, S.; Yu, M.; et al. Effects of Exogenously-Applied l-Ascorbic Acid on Root Expansive Growth and Viability of the Border-like Cells. Plant Signal. Behav. 2018, 13, e1514895. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spormann, S.; Sousa, F.; Oliveira, F.; Ferreira, V.; Teixeira, B.; Pereira, C.; Soares, C.; Fidalgo, F. Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles. Agriculture 2022, 12, 1546. https://doi.org/10.3390/agriculture12101546
Spormann S, Sousa F, Oliveira F, Ferreira V, Teixeira B, Pereira C, Soares C, Fidalgo F. Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles. Agriculture. 2022; 12(10):1546. https://doi.org/10.3390/agriculture12101546
Chicago/Turabian StyleSpormann, Sofia, Filipa Sousa, Fátima Oliveira, Vasco Ferreira, Bárbara Teixeira, Cláudia Pereira, Cristiano Soares, and Fernanda Fidalgo. 2022. "Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles" Agriculture 12, no. 10: 1546. https://doi.org/10.3390/agriculture12101546
APA StyleSpormann, S., Sousa, F., Oliveira, F., Ferreira, V., Teixeira, B., Pereira, C., Soares, C., & Fidalgo, F. (2022). Ascorbate Supplementation: A Blessing in Disguise for Tomato Seedlings Exposed to NiO Nanoparticles. Agriculture, 12(10), 1546. https://doi.org/10.3390/agriculture12101546