Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Trial
2.2. Field Trial
3. Results
3.1. Greenhouse Trial
3.2. Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agricultural Marketing Resource Center. Tomatoes. 2021. Available online: https://www.agmrc.org/commodities-products/vegetables/tomatoes (accessed on 15 February 2022).
- Sonoskie, L.; Culpepper, A.S.; Baxton, L.B.; Richburg, J.S. Evaluating the volatility of three formulations of 2,4-D when applied in the field. Weed Technol. 2015, 29, 177–184. [Google Scholar] [CrossRef]
- Sharkey, S.M.; Williams, B.J.; Parker, K.M. Herbicide drift from genetically engineered herbicide-tolerant crops. Environ. Sci. Technol. 2021, 55, 15559–15568. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.S.; Kruger, G.R.; da Cunha, J.P.; de Santana, D.G.; Pinto, L.A.; Guimarães, F.; Zaric, M. Dicamba spray drift as influenced by wind speed and nozzle type. Weed Technol. 2017, 31, 724–731. [Google Scholar] [CrossRef]
- Bish, M.; Farrell, S.; Lerch, R.; Bradley, K. Dicamba losses to air following applications to soybean under stable and nonstable atmospheric conditions. J. Environ. Qual. 2019, 48, 1675–1682. [Google Scholar] [CrossRef]
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef]
- Jones, G.; Norsworthy, K.; Barber, T.; Gbur, E.; Krueger, G. Off-target movement of DGA and BAPMA dicamba to sensitive soybean. Weed Technol. 2019, 33, 51–65. [Google Scholar] [CrossRef]
- Mueller, T.; Steckel, L. Dicamba volatility in humidomes as affected by temperature and herbicide treatment. Weed Technol. 2019, 33, 541–546. [Google Scholar] [CrossRef]
- Nordby, A.; Skuterud, R. The effects of boom height, working pressure and wind speed on spray drift. Weed Res. 1974, 14, 385–395. [Google Scholar] [CrossRef]
- Culpepper, A.S.; Sonoskie, L.M.; Shugart, J.; Leifheit, N.; Curry, M.; Gray, T. Effects of low-dose applications of 2,4-D and dicamba on watermelon. Weed Technol. 2018, 32, 267–272. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Osipitan, O.A.; Scott, J.E. Sensitivity of grape and tomato to micro-rates of dicamba-based herbicides. J. Hort. 2018, 5, 229. [Google Scholar] [CrossRef]
- Kruger, G.R.; Johnson, W.G.; Doohan, D.J.; Weller, S.C. Dose response of glyphosate and dicamba on tomato (Lycopersicon esculentum) injury. Weed Technol. 2020, 26, 256–260. [Google Scholar] [CrossRef]
- Mohseni-Moghadam, M.; Doohan, D. Response of bell pepper and broccoli to simulated drift rates of 2,4-D and dicamba. Weed Technol. 2015, 29, 226–232. [Google Scholar] [CrossRef]
- Bradley, K. Off-Target Movement of Dicamba in Missouri. Univ. Missouri Integrated Pest Management. 2021. Available online: https://ipm.missouri.edu/IPCM/2017/8/Off-target_movement/ (accessed on 22 February 2022).
- Crowley, B. Hundreds Wait to Have Dicamba Complaints Resolved. News Tribune. 2 March 2022. Available online: https://www.newstribune.com/news/2020/mar/02/Hundreds-wait-to-have-dicamba-complaints-resolved/ (accessed on 22 February 2022).
- Baurle, M.; Griffin, J.; Alford, J.; Curry, A., III; Kenty, M. Field evaluation of auxin herbicide volatility using cotton and tomato as bioassay crops. Weed Technol. 2017, 29, 185–197. [Google Scholar] [CrossRef]
- Bennet, R.J. The effects of 2,4-D iso-octyl ester/ioxynil herbicide in the liquid and vapour phases on the growth of tomato (Lycopersicum esculentum Mill.) plants. S. Afr. J. Plant Soil 1989, 6, 24–31. [Google Scholar] [CrossRef]
- Hemphill, D.D., Jr.; Montgomery, M.L. Response of vegetable crops to sublethal application of 2,4-D. Weed Sci. 1981, 29, 632–635. [Google Scholar] [CrossRef]
- Robbins, W.A.; Taylor, W.S. Injury to canning tomatoes caused by 2,4-D. Proc. Am. Soc. Hort. Sci. 1957, 70, 373–387. [Google Scholar]
- Hermes, M.E. Effects of Simulated 2,4-D and Dicamba Drift on Field-Grown Tomato Plants. Master’s Thesis, Texas A& M University, College Station, TX, USA, 2020. [Google Scholar]
- Warmund, M.R.; Trinklein, D.H.; Smeda, R.J. Antitranspirants partially mitigate auxin herbicide injury on tomato plants. HortScience 2021, 56, 932–939. [Google Scholar] [CrossRef]
- Coyne, D.P.; Burnside, O.C. Differential plant injury and yield responses of tomato varieties to 2,4-D. Univ. Neb. Agric. Expt. Stat. Res. Bul. 1968, 92, 226. [Google Scholar]
- Zangoueinejad, R.; Alebrahim, M.T.; Tseng, T.M. Evaluation of auxin tolerance in selected tomato germplasm under greenhouse and field conditions. Weed Technol. 2019, 33, 815–822. [Google Scholar] [CrossRef]
- Zangoueinejad, R.; Alebrahim, M.T.; Castro, E.B.; Stallworth, S.; Yue, Z.; Snyder, R.G.; Tseng, T.M. Dose-response study to evaluate dicamba tolerance in selected wild tomato germplasm. Preprints 2021, 2021120011. [Google Scholar] [CrossRef]
- United States Department of Agriculture. United States Standards for Grades of Fresh Tomatoes; Agriculture Marketing Service. 7 CFR 51; United States Department of Agriculture: Washington, DC, USA, 1991.
- Trinklein, D. Fresh Market Tomatoes; University of Missouri Extension: Columbia, MO, USA, 2016; Available online: https://extension.missouri.edu/publications/g6370 (accessed on 2 February 2022).
- Wen, C. The Simultaneous Determination of Thirteen Herbicides in Plants by Gas Chromatography/Mass Spectrometry. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 1994. [Google Scholar]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Merit’: A late blight-resistant large-fruited tomato hybrid. HortScience 2010, 45, 1547–1548. [Google Scholar] [CrossRef]
- Varten, J.H.M.; Scott, J.W.; Gardner, R.G. Characterization of blossom-end morphology genes in tomato and their usefulness in breeding for smooth blossom-end scars. J. Am. Soc. Hort. Sci. 1994, 119, 798–803. [Google Scholar] [CrossRef]
- Gardner, R.G.; North Carolina State University, Raleigh, NC, USA. Personal communication, 2022.
- Jordan, T.N.; Romanowski, R.R. Comparison of dicamba and 2,4-D injury to field-grown tomatoes. HortScience 1974, 9, 74. [Google Scholar] [CrossRef]
- Sirons, G.S.; Anderson, G.W.; Frank, R.; Ripley, B.D. Persistence of hormone-type herbicide residue in tissue of susceptible crop plants. Weed Sci. 1982, 30, 572–578. [Google Scholar] [CrossRef]
- Code of Federal Regulations, Part 180 Tolerances and Exemptions for Pesticide Chemical Residues in Food. Available online: https://www.govinfo.gov/content/pkg/CFR-2014-title40-vol24/xml/CFR-2014-title40-vol24-part180.xml#seqnum180.142 (accessed on 23 February 2022).
Cultivar | Plant Height (cm) | ||
---|---|---|---|
Control | Dicamba | 2,4-D | |
BHN 589 | 55.0 Ea | 42.2 Dc | 47.8 Eb |
Celebrity | 64.4 Ba | 53.2 Bc | 59.2 Db |
Florida 91 | 58.2 Da | 45.6 Cc | 55.6 Cb |
Mountain Merit | 67.2 Aa | 54.4 ABc | 63.4 Ab |
Primo Red | 65.0 Ba | 55.0 Ac | 63.0 Ab |
Red Deuce | 67.6 Aa | 53.6 Bc | 61.8 Bb |
Red Morning | 59.6 Ca | 46.8 Cc | 55.0 Cb |
Skyway | 66.4 Aa | 55.6 Ac | 61.8 Bb |
Significance | p-value | ||
Cultivar (C) | <0.0001 | ||
Treatment (T) | <0.0001 | ||
C × T | <0.0001 |
Cultivar | Number of Aborted Flowers/Plant | Number of Live Reproductive Organs/Plant | ||||
---|---|---|---|---|---|---|
Control | Dicamba | 2,4-D | Control | Dicamba | 2,4-D | |
BHN 589 | 208 Ac | 306 Ba | 259 Ab | 422 Ab | 471 Ba | 421 Ab |
Celebrity | 201 Ab | 261 Ca | 240 ABa | 350 Bb | 410 Ca | 360 Bb |
Florida 91 | 117 Dc | 228 Da | 169 Db | 260 Db | 349 Ea | 270 Eb |
Mountain Merit | 105 Dc | 259 Ca | 167 Db | 222 Ec | 406 Ca | 267 Eb |
Primo Red | 121 CDc | 196 Eb | 232 ABa | 224 Ec | 323 Fa | 265 Eb |
Red Deuce | 136 Cb | 202 Ea | 195 CDa | 270 Dc | 313 Fa | 252 Fb |
Red Morning | 161 Bc | 296 Ba | 216 BCb | 331 Cb | 385 Da | 328 Db |
Skyway | 208 Ab | 350 Aa | 223 BCb | 354 Bc | 494 Aa | 340 Cc |
Significance | p-value | |||||
Cultivar (C) | <0.0001 | <0.0001 | ||||
Treatment (T) | <0.0001 | <0.0001 | ||||
C × T | <0.0001 | <0.0001 |
Cultivar | Total Yield/Plant (g) | Marketable Yield/Plant (g) | Nonmarketable Yield/Plant (%) 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Control | Dicamba | 2,4-D | Control | Dicamba | 2,4-D | Control | Dicamba | 2,4-D | |
BHN 589 | 1432 Ga | 913 Gc | 1006 Hb | 1352 Ga | 785 Hc | 973 Hb | 5.6 Cb | 14.1 Ca | 3.2 Fc |
Celebrity | 1418 Ha | 1150 Dc | 1206 Gb | 1249 Ha | 996 Dc | 1121 Fb | 11.9 Aa | 12.8 Da | 7.0 Eb |
Florida 91 | 2315 Da | 1139 Ec | 1481 Db | 2207 Ca | 967 Ec | 1350 Db | 4.9 Dc | 15.1 Ca | 8.8 Cb |
Mountain Merit | 2254 Ea | 1118 Fc | 1975 Bb | 1987 Ea | 795 Gc | 1662 Cb | 11.5 Ac | 28.9 Aa | 15.8 Bb |
Primo Red | 2870 Ba | 1964 Cc | 2136 Ab | 2712 Ba | 1738 Cc | 1967 Ab | 5.5 Cc | 11.5 Ea | 7.9 Db |
Red Deuce | 3330 Aa | 2317 Ac | 1890 Cb | 3155 Aa | 2062 Ab | 1768 Bc | 5.3 CDc | 11.0 Ea | 6.4 Eb |
Red Morning | 2371 Ca | 2054 Bb | 1412 Ec | 2187 Da | 1906 Bb | 1296 Ec | 7.8 Bab | 7.2 Fb | 8.2 CDa |
Skyway | 1795 Fa | 1115 Fc | 1321 Fb | 1582 Fa | 863 Fc | 1079 Gb | 11.8 Ac | 22.6 Ba | 18.3 Ab |
Significance | p-Value | ||||||||
Cultivar (C) | <0.0001 | <0.0001 | <0.0001 | ||||||
Treatment (T) | <0.0001 | <0.0001 | <0.0001 | ||||||
C × T | <0.0001 | <0.0001 | <0.0001 |
Cultivar | Total Yield/Plant (g) | Marketable Yield/Plant (g) | ||||
---|---|---|---|---|---|---|
Control | Dicamba | 2,4-D | Control | Dicamba | 2,4-D | |
BHN 589 | 7950 Ea | 7309 Db | 7106 Fc | 6804 Da | 5247 Cb | 5570 CDb |
Celebrity | 9000 Ba | 8174 Bb | 8169 Bb | 7762 Ba | 5972 Bb | 5952 Bb |
Florida 91 | 9835 Aa | 9390 Ab | 8339 Ac | 8249 Aa | 7546 Ab | 6613 Ac |
Mountain Merit | 6093 Fb | 6699 Ea | 6093 Gb | 4411 Ea | 4480 Ea | 4367 Ea |
Primo Red | 8738 Ca | 6381 Gc | 7758 Db | 6814 Da | 4484 Ec | 5618 BCDb |
Red Deuce | 8699 Ca | 7551 Cc | 8070 BCb | 7301 Ca | 5894 Bc | 6381 Ab |
Red Morning | 8555 Da | 7349 Dc | 7513 Eb | 6966 CDa | 4851 Dc | 5465 Db |
Skyway | 8778 Ca | 6509 Fc | 8038 Cb | 6791 Da | 4030 Fc | 5886 BCb |
Significance | p-value | |||||
Cultivar (C) | <0.0001 | <0.0001 | ||||
Treatment (T) | <0.0001 | <0.0001 | ||||
C × T | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warmund, M.R.; Ellersieck, M.R.; Smeda, R.J. Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D. Agriculture 2022, 12, 1489. https://doi.org/10.3390/agriculture12091489
Warmund MR, Ellersieck MR, Smeda RJ. Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D. Agriculture. 2022; 12(9):1489. https://doi.org/10.3390/agriculture12091489
Chicago/Turabian StyleWarmund, Michele R., Mark R. Ellersieck, and Reid J. Smeda. 2022. "Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D" Agriculture 12, no. 9: 1489. https://doi.org/10.3390/agriculture12091489
APA StyleWarmund, M. R., Ellersieck, M. R., & Smeda, R. J. (2022). Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D. Agriculture, 12(9), 1489. https://doi.org/10.3390/agriculture12091489