Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Remote Sensing Data
2.2.1. Sentinel-2 Data Processing
2.2.2. Satellites’ Data Based Calculations: Vegetation and Salinity Indices
2.3. Rationale and Analysis Approach
3. Results and Discussion
3.1. Temporal Variation in Vegetation Indices
3.2. Soil Salinity Assessed from Sentinel-2 Satellite Data
3.3. Soil Salinity and Rice Cultivation Outcomes
3.4. Research Limitations and Development Perspectives
4. Conclusions
- (i)
- The satellite-based salinity indices explored (NDSI, ASTER_SI and SAVI) are sensitive to variations in soil conditions, allowing us to discriminate between different soil salinity conditions in rice cultivated areas, even in areas without severe soil salinity problems. This behavior was particularly revealed by ASTER_SI, the only index that uses SWIR bands, among the indices investigated. This index seems to have a sharper response to soil surface salinity, in relation to those other indices;
- (ii)
- The increased capability of the Sentinel-2 satellite imagery in giving detailed information at the plot scale about the salinity status of soils and status of the vegetation cover is a valuable asset in environmental monitoring and agriculture, and for mapping soil salinity in rice cultivation areas affected by salinity issues;
- (iii)
- The ability of Sentinel-2 satellite imagery-based indices to capture rice crop and soil conditions at relevant spatial scales, and the frequent satellite’s revisit times, allows us to appraise rice crop growth at the plot scale and estimate crop yields in salinity affected areas;
- (iv)
- The suitability of VI’s and SI’s need to be determined on a case-to-case basis, in order to reduce the uncertainty in studying the impact of salinity on rice plant canopies, rice crop evolution during the cultivation period and rice yields;
- (v)
- The remote sensing approach explored in this study on soil salinity assessment offers a valuable tool for undertaking more such studies spatially and temporally and, thus, intensifying the inventorying of spatial extent of such degradation in irrigated agricultural areas of Portugal and other regions where this problem is a potential environmental risk hazard and less reported.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Asfaw, E.; Suryabhagavan, K.V.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm. Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 250–258. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Elnaggar, A.A.; Noller, J.S. Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens. 2010, 2, 151–165. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Martius, C.; Park, S.; Hendrickx, J. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Vermeulen, D.; Niekerk, A.V. Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma 2017, 299, 1–12. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K. Arid land salinization detected by remotely-sensed land cover changes: A case study in the Siwa region, NW Egypt. J. Arid Environ. 2006, 66, 151–167. [Google Scholar] [CrossRef]
- Gorji, T.; Tanik, A.; Sertel, E. Soil salinity prediction, monitoring and mapping using modern technologies. Procedia Earth Planet. Sci. 2015, 15, 507–512. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. In Advances in Agronomy; Sparks, D.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 158, 130p. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, T.; Kumar, L. Linking long-term changes in soil salinity to paddy land abandonment in Jaffna Peninsula, Sri Lanka. Agriculture 2021, 11, 211. [Google Scholar] [CrossRef]
- Zhu, K.; Sun, Z.; Zhao, F.; Yang, T.; Tian, Z.; Lai, J.; Zhu, W.; Long, B. Relating hyperspectral vegetation indices with soil salinity at different depths for the diagnosis of winter wheat salt stress. Remote Sens. 2021, 13, 250. [Google Scholar] [CrossRef]
- Lambert, J.J.; Southard, R.J. Distribution of Saline and Alkaline Soils in the San Joaquin Valley: A Map of Valley Soils; University of California Division of Agriculture and Natural Resources: Oakland, CA, USA, 1992. [Google Scholar]
- Letey, J. Soil salinity poses challenges for sustainable agriculture and wildlife. Calif. Agric. 2000, 54, 43–48. [Google Scholar] [CrossRef]
- Welle, P.D.; Mauter, M.S. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California. Environ. Res. Lett. 2017, 12, 094010. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Adv. Remote Sens. 2013, 2, 373–385. [Google Scholar] [CrossRef]
- Garcia, L.; Eldeiry, A.; Elhaddad, A. Estimating soil salinity using remote sensing data. In Proceedings of the 2005 Central Plains Irrigation Conference, Sterling, CO, USA, 16–17 February 2005; pp. 1–10. [Google Scholar]
- Morshed, M.M.; Islam, M.T.; Jamil, R. Soil salinity detection from satellite image analysis: An integrated approach of salinity indices and field data. Environ. Monit. Assess. 2016, 188, 119. [Google Scholar] [CrossRef] [PubMed]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. Int. J. Remote Sens. 2018, 40, 237–252. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Scihub. 2021. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 6 November 2021).
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Retrieval of soil salinity from Sentinel-2 multispectral imagery. Eur. J. Remote Sens. 2019, 52, 138–154. [Google Scholar] [CrossRef]
- Ramos, T.B.; Castanheira, N.; Oliveira, A.R.; Paz, A.M.; Darouich, H.; Simionesei, L.; Farzamian, M.; Gonçalves, M.C. Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. Application to Lezíria Grande, Portugal. Agric. Water Manag. 2020, 241, 106387. [Google Scholar] [CrossRef]
- Elhag, M. Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia. J. Sens. 2016, 2016, e7596175. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.D.; Daliakopoulos, I.N.; Panagea, I.S.; Tsanis, I.K. Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto Int. 2018, 33, 321–338. [Google Scholar] [CrossRef]
- Rafik, A.; Ibouh, H.; Fels, A.E.A.E.; Eddahby, L.; Mezzane, D.; Bousfoul, M.; Amazirh, A.; Ouhamdouch, S.; Bahir, M.; Gourfi, A.; et al. Soil salinity detection and mapping in an environment under water stress between 1984 and 2018 (Case of the largest oasis in Africa-Morocco). Remote Sens. 2022, 14, 1606. [Google Scholar] [CrossRef]
- Madani, A.A. Soil salinity detection and monitoring using Landsat data: A case study from Siwa Oasis, Egypt. GISci. Remote Sens. 2005, 42, 171–181. [Google Scholar] [CrossRef]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; De Pauw, E. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg. 2014, 2, 21–31. [Google Scholar] [CrossRef]
- Vermeulen, D.; Niekerk, A.V. Evaluation of a WorldView-2 image for soil salinity monitoring in a moderately affected irrigated area. J. Appl. Remote Sens. 2016, 10, 026025. [Google Scholar] [CrossRef]
- Lobell, D.B.; Lesch, S.M.; Corwin, D.L.; Ulmer, M.G.; Anderson, K.A.; Potts, D.J.; Doolittle, J.A.; Matos, M.R.; Baltes, M.J. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. J. Environ. Qual. 2010, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Platonov, A.; Noble, A.; Kuziev, R. Soil salinity mapping using multi-temporal satellite images in agricultural fields of Syrdarya Province of Uzbekistan. In Developments in Soil Salinity Assessment and Reclamation: Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture; Shahid, S.A., Abdelfattah, M.A., Taha, F.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 87–98. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote Sens. Environ. 2015, 169, 335–343. [Google Scholar] [CrossRef]
- Bannari, A.; El-Battay, A.; Bannari, R.; Rhinane, H. Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens. 2018, 10, 855. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Tola, E.; Madugundu, R.; Fulleros, R.B. Sentinel-2 images for effective mapping of soil salinity in agricultural fields. Curr. Sci. 2021, 121, 384–390. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- INE. Main Crops Yield (kg/ha) by Geographic Localization (Agrarian Region) and Specie; Annual; Instituto Nacional de Estatística, I.P.: Lisboa, Portugal, 2019; Available online: http://www.ine.pt (accessed on 5 July 2021).
- USDA. Portuguese Rice Imports Pick up as Production Declines; USDA Gain Report; United States Department of Agriculture: Washington, DC, USA, 2017; p. 13.
- Cunha, P.P.; Campar, A.; Ramos, A.; Cunha, L.; Dinis, J. Geomorphology and coastal dynamics of the Figueira da Foz region. In Proceedings of the Sixth International Conference on Geomorphology, Zaragoza, Spain, 7–11 September 2005; Available online: http://hdl.handle.net/10316/15165 (accessed on 31 August 2022).
- Castro, P.; Freitas, H. Fungal biomass and decomposition of Spartina maritima leaves in the Mondego salt marsh (Portugal). Hydrobiologia 2000, 428, 171–177. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Martins, J.C.; Ramos, T.B. A salinização do solo em Portugal. Causas, extensão e soluções. Rev. Ciênc. Agrár. 2015, 38, 574–586. [Google Scholar] [CrossRef]
- Rodrigues, E.T.; Alpendurada, M.F.; Ramos, F.; Pardal, M.A. Environmental and human health risk indicators for agricultural pesticides in estuaries. Ecotoxicol. Environ. Saf. 2018, 150, 224–231. [Google Scholar] [CrossRef] [PubMed]
- IPMA. Boletins Climatológicos. 2022. Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=cli&cmbTema=pcl&idDep=cli&idTema=pcl&curAno=-1 (accessed on 1 July 2022).
- IPMA. Normais. Ficha Climatológica. 2022. Available online: https://www.ipma.pt/bin/file.data/climate-normal/cn_71-00_MONTE_REAL_BASE_AEREA.pdf (accessed on 1 July 2022).
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Laiskhanov, S.U.; Otarov, A.; Savin, I.Y.; Tanirbergenov, S.I.; Mamutov, Z.U.; Duisekov, S.N.; Zhogolev, A. Dynamics of soil salinity in irrigation areas in South Kazakhstan. Pol. J. Environ. Stud. 2016, 25, 2469–2475. [Google Scholar] [CrossRef]
- Elhag, M.; Bahrawi, J.A. Soil salinity mapping and hydrological drought indices assessment in arid environments based on remote sensing techniques. Geosci. Instrum. Methods Data Syst. 2017, 6, 149–158. [Google Scholar] [CrossRef]
- Nguyen, K.A.; Liou, Y.A.; Tran, H.P.; Hoang, P.P.; Nguyen, T.H. Soil salinity assessment by using near-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Prog. Earth Planet. Sci. 2020, 7, 1. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFCT Type III Final Report 1; Remote Sensing Center, Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Wu, W. The Generalized Difference Vegetation Index (GDVI) for land characterization. In Proceedings of the 8th ISSC (International Soil Sciences Congress), Izmir, Turkey, 15–17 May 2012. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Khan, N.M.; Guevara, V.V.; Vato, V.; Vhiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L.M.P. Remote sensing monitoring of rice fields: Towards assessing water saving irrigation management practices. Front. Remote Sens. 2021, 2, 762093. [Google Scholar] [CrossRef]
- Shabou, M.; Mougenot, B.; Chabaane, Z.; Walter, C.; Boulet, G.; Aissa, N.; Zribi, M. Soil clay content mapping using a time series of Landsat TM Data in semi-arid lands. Remote Sens. 2015, 7, 6059–6078. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Holland, K.H.; Schepers, J.S.; Francis, D.D.; Schlemmer, M.R.; Caldwell, R. Use of a crop canopy reflectance sensor to assess corn leaf chlorophyll content. ASA Spec. Publ. 2003, 66, 135–150. [Google Scholar] [CrossRef]
- Ge, Y.; Atefi, A.; Zhang, H.; Miao, C.; Ramamurthy, R.K.; Sigmon, B.; Yang, J.; Schnable, J.C. High-throughput analysis of leaf physiological and chemical traits with VIS–NIR–SWIR spectroscopy: A case study with a maize diversity panel. Plant Methods 2019, 15, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fertu, C.; Dobrota, L.M.; Balasan, D.L.; Stanciu, S. Monitoring the vegetation of agricultural crops using drones and remote sensing-comparative presentation. Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev. 2021, 21, 249–254. [Google Scholar]
- Wu, W.; Zucca, C.; Dessena, L.; Mulas, M. Using SPOT imagery to assess the effectiveness of combating desertification in Marrakech, Morocco. In Proceedings of the Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M. Trend analysis of soil salinity in different land cover types using Landsat time series data (case study Bakhtegan Salt Lake). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-4/W4, 251–257. [Google Scholar] [CrossRef]
- Nouri, H.; Borujeni, S.C.; Alaghmand, S.; Anderson, S.J.; Sutton, P.C.; Parvazian, S.; Beecham, S. Soil salinity mapping of urban greenery using remote sensing and proximal sensing techniques; the case of Veale Gardens within the Adelaide Parklands. Sustainability 2018, 10, 2826. [Google Scholar] [CrossRef]
- Konukcu, F.; Gowing, J.W.; Rose, D.A. Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas? Agric. Water Manag. 2006, 83, 1–12. [Google Scholar] [CrossRef]
- Rengasamy, P.; Chittleborough, D.; Helyar, K. Root-zone constraints and plant-based solutions for dryland salinity. Plant Soil 2003, 257, 249–260. [Google Scholar] [CrossRef]
- Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Remote Sens. Appl. Soc. Environ. 2019, 13, 415–425. [Google Scholar] [CrossRef]
- Bannari, A.; Guédon, A.M.; El-Ghmari, A. Mapping slight and moderate saline soils in irrigated agricultural land using advanced land imager sensor (EO-1) data and semi-empirical models. Commun. Soil Sci. Plant Anal. 2016, 47, 1883–1906. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance—Current assessment. J. Irrig. Drain. Eng. 1977, 103, 114–134. [Google Scholar] [CrossRef]
- Flowers, T.J.; Yeo, A.R. Variability in the resistance of sodium-chloride salinity within rice (Oryza Sativa L.) varieties. New Phytol. 2004, 88, 363–373. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.-K.; Yoon, I.-S.; Kim, K.-H.; Kwon, T.-R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Ghosh, B.; Ali, M.D.N.; Gantait, S. Response of rice under salinity stress: A review update. J. Res. Rice 2016, 4, 167. [Google Scholar] [CrossRef]
- Mendes, J.; Ruela, R.; Picado, A.; Pinheiro, J.P.; Ribeiro, A.S.; Pereira, H.; Dias, J.M. Modeling dynamic processes of Mondego Estuary and Óbidos Lagoon using Delft3D. J. Mar. Sci. Eng. 2021, 9, 91. [Google Scholar] [CrossRef]
- Lopes, C.L.; Sousa, M.C.; Ribeiro, A.; Pereira, H.; Pinheiro, J.P.; Vaz, L.; Dias, J.M. Evaluation of future estuarine floods in a sea level rise context. Sci. Rep. 2022, 12, 8083. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, L.; Yang, X.; et al. Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in soil salinity detection: A case study of agricultural lands in coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [Google Scholar] [CrossRef]
- Moussa, I.; Walter, C.; Michot, D.; Boukary, I.A.; Nicolas, H.; Pichelin, P.; Guéro, Y. Soil Salinity assessment in irrigated paddy fields of the niger valley using a four-year time series of sentinel-2 satellite images. Remote Sens. 2020, 12, 3399. [Google Scholar] [CrossRef]
- Fiorillo, E.; Di Giuseppe, E.; Fontanelli, G.; Maselli, F. Lowland rice mapping in Sédhiou Region (Senegal) using sentinel 1 and sentinel 2 data and random forest. Remote Sens. 2020, 12, 3403. [Google Scholar] [CrossRef]
- Dunand, R.; Saichuk, J. Rice growth and development. In Louisiana Rice Production Handbook; Saichuk, J., Ed.; Louisiana State University Agricultural Center: Baton Rouge LA, USA, 2009. [Google Scholar]
- Figueiredo, N.; Merino, R.; Prazeres, A.; Fareleira, P.; Vargues, A.; Carranca, C.; Marques, P.; Pereira, J.; Goufo, P.; Trindade, H.; et al. O Cultivo do Arroz e a Resposta do Agrossistema às Alterações Ambientais de Temperatura e Dióxido de Carbono; Dossiê Técnico; Vida Rural: Madrid, Spain, 2013; pp. 28–31. Available online: http://hdl.handle.net/10400.11/2588 (accessed on 26 July 2022).
- Maki, M.; Sritumboon, S.; Srisutham, M.; Yoshida, K.; Homma, K.; Sukchan, S. Impact of changes in the relationship between salinity and soil moisture on remote sensing data usage in northeast Thailand. Hydrol. Res. Lett. 2022, 16, 54–58. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Xing, A.; Zhuo, Z.; Zhang, S.; Zhang, Y.; Huang, Y. Spatial prediction of soil salinity in a semiarid oasis: Environmental sensitive variable selection and model comparison. Chin. Geogr. Sci. 2019, 29, 784–797. [Google Scholar] [CrossRef]
- Clermont-Dauphina, C.; Suwannangb, N.; Grunbergerc, O.; Hammeckera, C.; Maeght, J.L. Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crops Res. 2010, 118, 289–296. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Sinha, P. Soil salinity and vegetation cover change detection from multi-temporal remotely sensed imagery in Al Hassa Oasis in Saudi Arabia. Geocarto Int. 2018, 33, 830–846. [Google Scholar] [CrossRef]
- Chang, K.W.; Shen, Y.; Lo, J.C. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 2005, 97, 872–878. [Google Scholar] [CrossRef]
- Siyal, A.A.; Dempewolf, J.; Becker-Reshef, I. Rice yield estimation using Landsat ETM plus data. J. Appl. Remote Sens. 2015, 9, 095986. [Google Scholar] [CrossRef]
- de Lima, I.; Jorge, R.G.; de Lima, J.L.M.P. Remote sensing based tools to assess risk in rice agriculture. In Geografia, Riscos e Protecção Civil; Nunes, A., Amaro, A., Vieira., A., de Castro, F.V., Félix, F., Eds.; RISCOS—Associação Portuguesa de Riscos, Prevenção e Segurança: Coimbra, Portugal, 2021; Volume 1, pp. 317–326. [Google Scholar] [CrossRef]
Period | Monthly Precipitation (mm) | Average Daily Temperature (°C) | Total Precipitation (Jan.–Apr.) | ||
---|---|---|---|---|---|
Min | Max | Min | Max | (mm) | |
1971–2000 | 8.5 (Jul) | 118.1 (Dec) | 9.6 (Jan) | 20.1 (Aug) | 253.8 |
2017 | 4.1 (Aug) | 104.9 (Dec) | 8.4 (Jan) | 19.6 (Aug) | 215.3 |
2018 | 0.5 (Sep) | 248.9 (Mar) | 10 (Jan) | 20.8 (Aug) | 474.5 |
Band ID | Spectral Region | Center Wavelength (nm) | Band Width (nm) | Spatial Resolution (m) |
---|---|---|---|---|
B3 | Green (G) | 560 | 35 | 10 |
B4 | Red (R) | 665 | 30 | 10 |
B8 | Near Infrared (NIR) | 842 | 115 | 10 |
B11 | Short Wave Infrared (SWIR1) | 1610 | 90 | 20 |
B12 | Short Wave Infrared (SWIR2) | 2190 | 180 | 20 |
Indices | Equation | Index Range | References |
---|---|---|---|
Normalized Difference Vegetation Index | [−1,+1] | [47] | |
Green Normalized Difference Vegetation Index | [−1,+1] | [48,49,50] | |
Generalized Difference Vegetation Index | [−1,+1] | [51] | |
Soil Adjusted Vegetation Index | [−1.5,+1.5], for L = 0.5 | [52] | |
Normalized Difference Salinity Index | [−1,+1] | [53] | |
Salinity Index ASTER | [−1,+1] | [34] |
Year | Sentinel-2 Mission | Date | DOY |
---|---|---|---|
2017 | S2-A | 28 April | 118 |
S2-A | 25 October | 298 | |
2018 | S2-B | 25 April | 115 |
S2-A | 27 October | 300 |
Index | Quinta do Canal | Pranto | ||||
---|---|---|---|---|---|---|
2017 | 2018 | % Variation | 2017 | 2018 | % Variation | |
NDVImax | 0.91 | 0.89 | −2.2% | 0.91 | 0.81 | −11.0% |
GNDVImax | 0.76 | 0.77 | 1.3% | 0.80 | 0.68 | −15.0% |
GDVImax | 0.99 | 0.99 | 0% | 0.99 | 0.97 | −2.0% |
Field Plots | Date | NDSI | ASTER_SI | SAVI | |||
---|---|---|---|---|---|---|---|
Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | ||
Quinta do Canal | 28 April 2017 | −0.14 | 26.4 | 0.05 | 18.0 | 0.22 | 25.5 |
25 October 2017 | −0.23 | 22.6 | 0.15 | 4.7 | 0.35 | 22.0 | |
25 April 2018 | −0.19 | 33.7 | 0.12 | 4.2 | 0.29 | 33.1 | |
27 October 2018 | −0.25 | 16.8 | 0.14 | 3.6 | 0.37 | 17.0 | |
Pranto | 28 April 2017 | −0.15 | 16.0 | 0.09 | 7.8 | 0.23 | 15.7 |
25 October 2017 | −0.22 | 8.6 | 0.14 | 1.4 | 0.33 | 8.2 | |
25 April 2018 | −0.20 | 27.0 | 0.23 | 6.1 | 0.31 | 26.5 | |
27 October 2018 | −0.22 | 16.8 | 0.13 | 3.1 | 0.33 | 16.7 |
Year | Field Plots | NDVI65 | Estimated Rice Yield (ton ha−1) |
---|---|---|---|
2017 | Quinta do Canal | 0.81 | 8.7 |
Pranto | 0.84 | 9.4 | |
2018 | Quinta do Canal | 0.79 | 8.4 |
Pranto | 0.71 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerardo, R.; de Lima, I.P. Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal. Agriculture 2022, 12, 1490. https://doi.org/10.3390/agriculture12091490
Gerardo R, de Lima IP. Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal. Agriculture. 2022; 12(9):1490. https://doi.org/10.3390/agriculture12091490
Chicago/Turabian StyleGerardo, Romeu, and Isabel P. de Lima. 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal" Agriculture 12, no. 9: 1490. https://doi.org/10.3390/agriculture12091490
APA StyleGerardo, R., & de Lima, I. P. (2022). Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal. Agriculture, 12(9), 1490. https://doi.org/10.3390/agriculture12091490