Content of Heavy Metals in the Lichens of Winter Reindeer Pastures of the Timan and Bolshezemelskaya Tundras
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Chemical Examination
2.2. Statistical Analysis
2.3. Geology and Geomorphological Settings
2.4. Field Trip Observations
3. Results
Chemical Compositions of Analyzed Lichens
4. Discussion
5. Conclusions
- The terrains located in the Timan region and the Bolshezemelskaya tundra were formed on the layer of weathered rocks of the file.
- The land also serves as a reindeer pasture, which is an important food source for the indigenous peoples of the area.
- Since the source of pollution is most likely natural, solving the problem of inadequate reindeer-breeding resources may only be related to a search for other winter pastures that do not affect other sandstone pasts. If the source of pollution is still industrial, but is located at a considerable distance, a change in the location of winter pastures is also necessary to reduce the content of metals in the feed and to prevent their accumulation in reindeer products.
- The enrichment in heavy metals including copper in some lichens is a threat to the condition of these animals and peoples. Considering that in many samples the heavy metals are concentrated in part of the thallus, it can be said that overgrazing of the reindeer will inevitably lead to a deterioration in their health. In other words, if the feed resources are insufficient, then the reindeer will eat all the thallus, including the lower part with a high concentration of heavy metals.
- Reversing a herd is difficult, but it can be solved. Therefore, a solution for the stable breeding of reindeer is to conduct monitoring based on an analysis of the actual geochemical conditions of their pastures.
- The discussed problem of ion exchange leading to the displacement of zinc ions with the control of copper ions is universal and also takes place in other regions of the Arctic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aslam, S.N.; Huber, C.; Asimakopoulos, A.; Steinnes, E. Trace elements and Polychlorinated Biphenyls (PCBs) in Terrestrial Compartments of Svalbard, Norwegian Arctic. Sci. Total Environ. 2019, 685, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.W.; Barrie, L.A.; Bidleman, T.F.; Diamond, M.L.; Gregor, D.J.; Semkin, R.G.; Yunker, M.B. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 2000, 254, 93–234. [Google Scholar] [CrossRef]
- Carlsson, P.; Breivik, K.; Brorström-Lundén, E.; Cousins, I.; Christensen, J.; Grimalt, J.O.; Halsall, C.; Kallenborn, R.; Abass, K.; Lammel, G.; et al. Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes: A comprehensive review combined with ArcRisk project results. Environ. Sci. Pollut. Res. 2018, 25, 22499–22528. [Google Scholar] [CrossRef] [PubMed]
- Schuster, P.F.; Schaefer, K.M.; Aiken, G.R.; Antweiler, R.C.; Dewild, J.F.; Gryziec, J.D.; Zhang, T. Permafrost stores a globally significant amount of mercury. Geophys. Res. 2018, 45, 1463–1471. [Google Scholar] [CrossRef]
- Jasiak, I.; Wiklund, J.A.; Leclerc, E.; Telford, J.V.; Couture, R.M.; Venkiteswaran, J.J.; Hall, R.I.; Wolfe, B.B. Evaluating spatiotemporal patterns of arsenic, antimony, and lead deposition from legacy gold mine emissions using lake sediment records. Appl. Geochem. 2021, 134, 105053. [Google Scholar] [CrossRef]
- Kay, M.L.; Wiklund, J.A.; Sun, X.; Savage, C.A.M.; Adams, J.K.; MacDonald, L.A.; Klemt, W.H.; Brown, K.C.; Hall, R.I.; Wolfe, B.B. Assessment of mercury enrichment in lake sediment records from Alberta Oil Sands development via fluvial and atmospheric pathways. Front. Environ. Sci. 2022, 10, 949339. [Google Scholar] [CrossRef]
- McGovern, M.; Borgå, K.; Heimstad, E.; Ruus, A.; Evenset, A. Small Arctic rivers transport legacy contaminants from thawing catchments to coastal areas in Kongsfjorden, Svalbard. Environ. Pollut. 2022, 304, 119191. [Google Scholar] [CrossRef]
- Hermanson, M.H.; Isaksson, E.; Hann, R.; Ruggirello, R.M.; Teixeira, C.; Muir, D.C.G. Historic Atmospheric Organochlorine Pesticide and Halogenated Industrial Compound Inputs to Glacier Ice Cores in Antarctica and the Arctic. ACS Earth Space Chem. 2020, 4, 2096–2104. [Google Scholar] [CrossRef]
- Skogsberg, E.; McGovern, M.; Poste, A.; Jonsson, S.; Arts, M.T.; Varpe, Ø.; Borgå, K. Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off. Environ. Pollut. 2022, 306, 119361. [Google Scholar] [CrossRef]
- Borgå, K.; Fisk, A.T.; Hoekstra, P.F.; Muir, D.C.G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in arctic marine food webs. Environ. Toxicol. Chem. 2004, 23, 2367–2385. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, P.; Vrana, B.; Sobotka, J.; Borgå, K.; Nizzetto, P.B.; Varpe, Ø. New brominated flame retardants and dechlorane plus in the Arctic: Local sources and bioaccumulation potential in marine benthos. Chemosphere 2018, 211, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Iglovsky, S.; Lubas, A.; Yakovlev, E. New Data on Paleogeography of Quaternary Coast Sediments of the Rivers of the European North of Russia Using Isotope-Geochemical Methods. Appl. Sci. 2022, 12, 6988. [Google Scholar] [CrossRef]
- Kriauciunas, V.; Iglovsky, S.; Kuznetsova, I.; Shakhova, E.; Bazhenov, A.; Mironenko, K. Spatial distribution of natural and anthropogenic radionuclides in the soils of Naryan-Mar. Arct. Environ. Res. 2018, 18, 82–89. [Google Scholar] [CrossRef]
- Shirokova, L.; Ivanova, I.; Manasypov, R.; Pokrovsky, O.; Chupakov, A.; Iglovsky, S.; Shorina, N.; Zabelina, S.; Gofarov, M.; Payandi-Rolland, D.; et al. The evolution of the ecosystems of thermokarst lakes of the Bolshezemelskaya tundra in the context of climate change. E3S Web Conf. 2019, 98, 02010. [Google Scholar] [CrossRef]
- O’Hara, T.M.; George, J.C.; Blake, J.; Burek, K.; Carroll, G.; Dau, J.; Bennett, L.; McCoy, C.P.; Gerard, P.; Woshner, V. Investigation of heavy metals in a large mortality event in caribou of northern Alaska. Arct. Inst. N. Am. 2003, 56, 125–135. [Google Scholar] [CrossRef]
- Paatero, J.; Salminen-Paatero, S. Transfer of transuranium elements along the food chain lichen-reindeer-man—A review of investigations in Finnish Lapland. J. Environ. Radioact. 2020, 212, 106126. [Google Scholar] [CrossRef]
- Istomin, K.V.; Habek, J.O. Soils of the cryolithozone and the traditional land use of the indigenous population of north-eastern European Russia an Western Siberia: Research problem statement. Vestn. Arheol. Antropol. Etnogr. 2019, 1, 108–119. [Google Scholar] [CrossRef]
- Kuz’menkova, N.V.; Kosheleva, N.E.; Asadulin, E.E. Heavy metals in soil and lichen of the tundra and forest tundra zones (North-West of the Kola Peninsula). Pochvovedenie 2015, 2, 244–256. (In Russian) [Google Scholar] [CrossRef]
- Parmuzin, N.M. Geological Map of the Nenets Autonomous District; A.P. Karpinsky Whole-Russian Research Geological Institute: Rosnedra, Russia, 2015. [Google Scholar]
- Andreichev, V.L.; Soboleva, A.A.; Dovzhikova, E.G.; Miller, E.L.; Coble, M.A.; Larionov, A.N.; Vakulenko, O.V.; Sergeev, S.A. Age of Granitoids in the Pripechora Fault Zone of the Basement of Pechora Basin: First U–Pb (SIMS) Data. Dokl. Earth Sci. 2017, 474, 498–502. [Google Scholar] [CrossRef]
- Danilov, V.H. Fault tectonics and oil and gas content of the Timan-Pechora sedimentary basin. Nevs Gas Sci. 2012, 9, 86–96. [Google Scholar]
- Bushnev, D.A.; Burdel’naya, N.S.; Ponomarenko, E.S.; Zubova, T.A. Anoxia in the Domanik Basin of the Timan–Pechora Region. Lithol. Miner. Resour. 2016, 51, 283–289. [Google Scholar] [CrossRef]
- Tel’nova, O.P.; Shumilov, I.K. The Upper Devonian Sargaevo Regional Stage in the Tsil’ma River Basin, Middle Timan. Stratigr. Geol. Correl. 2017, 25, 167–187. [Google Scholar] [CrossRef]
- Isaev, V.S.; Naugolnykh, S.V.; Kirilishina, E.M. Permian Fossil Plants from the Sediments of the Vorkuta Series at the Pechora Coal Basin in the Collection of the Earth Science Museum of Moscow State University. Mosc. Univ. Geol. Bull. 2018, 73, 434–443. [Google Scholar] [CrossRef]
- Kirichkova, A.I.; Esenina, A.V. Middle Triassic Pteridosperms (Pinophyta) of the Timan–Pechora Basin. Stratigr. Geol. Correl. 2016, 24, 118–140. [Google Scholar] [CrossRef]
- Mosseichik, Y.V.; Ryabinkina, N.N. New Data on Fossil Flora from the Visean Terrigenous Complex of Pechora Basin. Dokl. Earth Sci. 2009, 427, 764–767. [Google Scholar] [CrossRef]
- Nosova, N.V.; Kiritchkova, A.I. The First Finding of the Leaves of Mirovia Reymanówna (Pinopsida) in the Middle Jurassic of the Pechora River (North of European Russia). Paleontol. J. 2015, 49, 211–218. [Google Scholar] [CrossRef]
- Zavyalovaa, A.P.; Chupakhinaa, V.V.; Stoupakovaa, A.V.; Gatovskya, J.A.; Kalmykova, G.A.; Korobovaa, N.I.; Suslovaa, A.A.; Bolshakovaa, M.A.; Sannikovaa, I.A.; Kalmykova, A.G. Comparison of the Domanic Outcrops in the Volga–Ural and Timan–Pechora Basins. Mosc. Univ. Geol. Bull. 2019, 74, 56–72. [Google Scholar] [CrossRef]
- Mitta, V.V. The Upper Bajocian–Lower Bathonian of Pechora River Basin and Boreal–Tethyan Correlation. Stratigr. Geol. Correl. 2009, 17, 68–78. [Google Scholar] [CrossRef]
- Andreicheva, L.N.; Marchenko-Vagapova, T.I. The Neopleistocene of North European Russia: Stratigraphy, Paleogeography, and Paleoclimate. Stratigr. Geol. Correl. 2007, 15, 421–436. [Google Scholar] [CrossRef]
- Antonovskaya, T.V. Oil and gas potential of Domanik horizon of the Timan-Pechora oil and gas province. Vestn. IG Komi SC UB RAS 2015, 7, 20–25. [Google Scholar]
- Prischepa, O.M.; Bazhenova, T.K.; Bogatskii, V.I. Petroleum systems of the Timan-Pechora sedimentary basin (Including the Offshore Pechora Sea). J. Geol. Geophys. Sib. Branch Russ. Acad. Sci. 2011, 52, 1129–1150. [Google Scholar] [CrossRef]
- Pavlidis, Y.A.; Nikiforov, S.L.; Ogorodov, S.A.; Tarasov, G.A. The Pechora Sea: Past, Recent, and Future. Oceanology 2007, 47, 865–876. [Google Scholar] [CrossRef]
- Andreicheva, L.N. Correlation of Neopleistocene Tills in the Northern Russian Plain: Evidence from Petrography of the Coarse-Clastic Material. Lithol. Miner. Resour. 2017, 52, 69–79. [Google Scholar] [CrossRef]
- Askhabov, A.M.; Kuznetsov, S.K.; Tarbaev, M.B.; Burtsev, I.N.; Timonina, N.N.; Pystin, A.M. Mineral resourses of the Timan-North Urals Region and prospects of their development. Proc. Komi Sci. Centre Ural Div. Russ. Acad. Sci. 2015, 3, 79–90. [Google Scholar]
- Kuznetsov, S.K.; Timonina, N.N.; Kuznetsov, D.S. Resource and value potential of mineral resources of Arctic zone of Timan-Northen Ural Region. Vestn. Inst. Geol. Komi Sci. Cent. Ural. Branch RAS 2016, 11, 31–39. [Google Scholar] [CrossRef]
- Shumilov, I.H. History of discovery of the first cooper ore in Russia. Gorn. Zhurnal 2008, 12, 88–90. (In Russian) [Google Scholar]
- Shumilov, I.K. Copper Sulfide Pseudomorphs after Phytodetritus in Devonian Sedimentary Rocks of the Middle Timan Region. Geol. Ore Depos. 2008, 50, 763–771. [Google Scholar] [CrossRef]
- Stenina, A.S.; Khokhlova, L.G.; Patova, E.N.; Lytkina, Z.A. Environmental Condition of Water Bodies in the Territory of an Oil–Gas Condensate Field (the Pechora Delta). Water Resour. 2004, 31, 545–552. [Google Scholar] [CrossRef]
- Belonin, M.D.; Budanov, G.F.; Danilevsky, S.A.; Prischepa, O.M.; Teplov, E.L. Timan-Pechora Province: Geological Structure, Oil and Gas Potential and Development Prospects; Nedra: Moscow, Russia, 2004; pp. 57–90. (In Russian) [Google Scholar]
- Lavrinenko, I.A. Landscape diversity of specially protected natural territories of Nenets Autonomous Okrug. Geogr. Nat. Resour. 2012, 33, 37–44. [Google Scholar] [CrossRef]
- Il’chukov, S.V. Landscapes of Komi Republic. Vestn. Insituta Biol. Komi NC UrO RAN 2010, 4, 2–7. (In Russian) [Google Scholar]
- Gao, J.; Wu, Y.Y.; Liu, B.Y.; Zhao, R.K.; Liu, A.Q.; Li, X.; Chen, Q.Z.; Sun, L.W.; Guo, X.P.; Liu, H.J. Vertical Distribution Patterns of Element Concentrations in Podetia of Cladonia rangiferina from Huzhong Natural Reserve, Heilongjiang, China. Pol. J. Environ. Stud. 2021, 30, 104–110. [Google Scholar] [CrossRef]
- Klokov, K.B. National fluctuations and regional variations in domesticated reindeer numbers in the Russian North: Some possible explanations. Sibirica 2011, 10, 23–47. [Google Scholar] [CrossRef]
- Mikhailova, I.N.; Sharunova, I.P. Dynamics of heavy metal accumulation in thalli o the epiphytic lichen Hypogymnia physodes. Russ. J. Ecol. 2008, 39, 346–352. [Google Scholar] [CrossRef]
- Borozdin, E.K.; Zabrodin, V.A.; Vagin, A.S. Reindeer husbandry; Agropromizdat Leningradskoye Otdeleniye: Leningrad, Russia, 1990; pp. 58–59. (In Russian) [Google Scholar]
- Moskovichenko, D.V.; Valeeva, E.I. Content of heavy metals in lichens of west Siberian north. Vestn. Ecol. Lesoved. Landshaftoved. 2011, 11, 162–172. [Google Scholar]
- Vosel, Y.; Belyanin, D.; Melgunov, M.; Vosel, S.; Mezina, K.; Kropacheva, M.; Zhurkova, I.; Shcherbov, B. Accumulation of natural radionuclides (Be-7,Pb-210) and microelements in mosses, lichens and cedar and larch needles in the Arctic Western Siberia. Environ. Sci. Pollut. Res. 2021, 28, 2880–2892. [Google Scholar] [CrossRef] [PubMed]
- Backor, M.; Pawlik-Skowronska, B.; Bud’ova, J.; Skowronski, T. Response to copper and cadmium stress in wild-type and copper tolerant strains of the lichen alga Trebouxia erici: Metal accumulation, toxicity and non-protein thiols. Plant Growth Regul. 2007, 52, 17–27. [Google Scholar] [CrossRef]
- Chettri, M.K.; Sawidis, T.; Zachariadis, G.A.; Stratis, J.A. Uptake of heavy metals by living and dead Cladonia thalli. Environ. Exp. Bot. 1997, 37, 39–52. [Google Scholar] [CrossRef]
- Kovacik, J.; Dresler, S.; Babula, P.; Hladký, J.; Sowa, I. Calcium has protective impact on cadmium-induced toxicity in lichens. Plant Physiol. Biochem. 2020, 156, 591–599. [Google Scholar] [CrossRef]
No. | No of Sampling Point | Geographic Coordinates | Location | Reindeer Husbandry | Nature Protection Status of the Territory |
---|---|---|---|---|---|
Nenets Autonomous Okrug | |||||
1. | 1 | 66,709685 n.l. 49,022693 e.l. | The valley of the Sula River in the upper reaches 52 km from the village of Niznaja Pesha | APC “Zapolarè” | - |
2. | 9 | 66,761811 n.l. 48,923816 e.l. | APC “Zapolarè” | - | |
3. | 2 | 68,689265 n.l. 48,983882 e.l. | Sand spit Yuzhnye Ploskie Koshki is located south of Kolguev Island. | - | KOTR NE-011 «Kolguev Island» SNRRS «Kolguevsky» |
4. | 3 | 67,019872 n.l. 48,876935 e.l. | The valley of the Volonga river in the upper reaches | APC “Indiga” | «Severny Timan» Nature Park |
5. | 5 | 67,120140 n.l. 56,294269 e.l. | Haryaga River basin, 5 km northwest of the lake. | APC “Put Ilìtcha” (TTNU) | - |
6. | 6 | 67,179927 n.l. 56,299762 e.l. | APC “Put Ilìtcha” (TTNU) | - | |
7. | 10 | 66,888813 n.l. 47,297713 e.l. | The coast of the Chosha (Cheshskaya) Bay of Pechora Sea 13 km west of the mouth of the Pesha River, in the valley of the Sukhaya Rechka River (500 m southeast of the mouth) | APC “Zapolarè” | 13 km east of KOTR NE-007 “South Coast of the Czech Bay» |
8. | 11 | 66,873295 n.l. 47,240893 e.l. | The coast of the Czech Bay of the Pechora Sea, 1.1 km southwest of the mouth of the Grabezhnaya River | APC “Zapolarè” | 8 km east of KOTR NE-007 “South Coast of the Czech Bay» |
Komi Republic | |||||
9. | 7 | 66,577518 n.l. 55,316485 e.l. | Minisavis River Basin | ~17 km to the border of the territory APC “Izhemsky olenevod and Ko” | Intact forest areas |
10. | 4 | 66,751774 n.l. 56,096515 e.l. | Laya River Valley (right tributary of the Pechora River) 2.5 km from the confluence of the Yuryakha River | ~27 km to the border of the territory APC “Izhemsky olenevod and Ko” | Intact forest areas |
11. | 8 | 66,805977 n.l. 56,091022 e.l. | ~17 km to the border of the territory APC “Izhemsky olenevod and Ko” | Intact forest areas |
Point. | Parts of Tallom | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper | Middle | Lower | ||||||||||
Cd | Pb | Cu | Zn | Cd | Pb | Cu | Zn | Cd | Pb | Cu | Zn | |
1 | 0.32 ± 0.02 | 0.79 ± 0.06 | 0.45 ± 0.06 | 9.02 ± 0.64 | 0.21 ± 0.012 | 0.96 ± 0.08 | 0.20 ± 0.03 | 16.03 ± 1.71 | 0.09 ± 0.02 | 1.30 ± 0.14 | 0.57 ± 0.031 | 18.05 ± 1.43 |
2 | 0.12 ± 0.01 | 0.87 ± 0.07 | 0.88 ± 0.12 | 15.24 ± 1.73 | 0.018 ± 0.001 | 0.98 ± 0.09 | 0.42 ± 0.04 | 3.74 ± 0.40 | 0.26 ± 0.02 | 0.18 ± 0.02 | 0.43 ± 0.02 | 23.25 ± 1.81 |
3 | 0.003 ± 0.001 | 5.001 ± 0.612 | 9.789 ± 0.92 | 0.027 ± 0.003 | 0.001 ± 0.0001 | 5.697 ± 0.7 | 9.372 ± 1.01 | 3.067 ± 0.27 | 0 | 57.791 ± 6.102 | 13.633 ± 0.984 | 0 |
4 | 0.014 ± 0.001 | 8.032 ± 0.91 | 107.33 ± 9.32 | 0.1 ± 0.01 | 0.043 ± 0.003 | 4.24 ± 0.61 | 61.37 ± 5.67 | 0.1 ± 0.01 | 0.053 ± 0.0043 | 5.54 ± 5.01 | 76.12 ± 5.87 | 0.1 ± 0.01 |
5 | 0.055 ± 0.004 | 4.58 ± 0.51 | 59.9 ± 5.12 | 0.1 ± 0.01 | 0.099 ± 0.01 | 10.05 ± 1.12 | 41.68 ± 5.12 | 0.1 ± 0.01 | 0.03 ± 0.003 | 6.27 ± 5.14 | 174.26 ± 12.64 | 0.1 ± 0.01 |
6 | 0.06 ± 0.0031 | 1.99 ± 0.201 | 0.74 ± 0.0413 | 5.55 ± 0.461 | 0.029 ± 0.0023 | 1.28 ± 0.09 | 0.99 ± 0.07 | 2.64 ± 0.19 | 0 | 2.95 ± 0.22 | 1.25 ± 0.14 | 32.79 ± 2.76 |
7 | 0.82 ± 0.08 | 4.32 ± 0.39 | 0.19 ± 0.015 | 2.71 ± 0.30 | 0.027 ± 0.001 | 7.28 ± 0.69 | 3.57 ± 0.41 | 0.1 ± 0.01 | 0 | 0.38 ± 0.041 | 34.25 ± 3.65 | 2.56 ± 0.19 |
8 | 0.08 ± 0.009 | 3.66 ± 0.41 | 35.91 ± 4.02 | 0.79 ± 0.07 | 0.76 ± 0.07 | 0.74 ± 0.06 | 0.12 ± 0.014 | 7.33 ± 0.80 | 0 | 0.72 ± 0.63 | 48.09 ± 3.15 | 0.1 ± 0.01 |
9 | 0.03 ± 0.01 | 0.55 ± 0.045 | 0.1 1± 0.010 | 6.67 ± 0.70 | 0.1 ± 0.01 | 0.57 ± 0.045 | 6.29 ± 0.58 | 7.58 ± 0.59 | 0.05 ± 0.005 | 2.76 ± 0.03 | 5.51 ± 0.23 | 12.04 ± 0.98 |
10 | 0.02 ± 0.002 | 1.87 ± 0.12 | 9.59 ± 1.00 | 14.51 ± 1.51 | 0.02 ± 0.001 | 0.72 ± 0.06 | 0.71 ± 0.051 | 0.1 ± 0.01 | 0.4 1± 0.03 | 4.00 ± 0.39 | 0.14 ± 0.01 | 0.63 ± 0.05 |
11 | 0.001 ± 0.0002 | 1.28 ± 0.09 | 0.42 ± 0.035 | 0.15 ± 0.02 | 0.05 ± 0.004 | 0.49 ± 0.05 | 0.38 ± 0.028 | 0.45 ± 0.04 | 0.82 ± 0.07 | 4.23 ± 0.47 | 1.17 ± 0.06 | 13.78 ± 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menshakova, M.; Huber, M.; Gainanova, R.; Surovets, V.; Moiseeva, N.; Nizikova, A.; Mashinets, M. Content of Heavy Metals in the Lichens of Winter Reindeer Pastures of the Timan and Bolshezemelskaya Tundras. Agriculture 2022, 12, 1560. https://doi.org/10.3390/agriculture12101560
Menshakova M, Huber M, Gainanova R, Surovets V, Moiseeva N, Nizikova A, Mashinets M. Content of Heavy Metals in the Lichens of Winter Reindeer Pastures of the Timan and Bolshezemelskaya Tundras. Agriculture. 2022; 12(10):1560. https://doi.org/10.3390/agriculture12101560
Chicago/Turabian StyleMenshakova, Marija, Miłosz Huber, Ramziya Gainanova, Valeriia Surovets, Nina Moiseeva, Anastasiia Nizikova, and Marina Mashinets. 2022. "Content of Heavy Metals in the Lichens of Winter Reindeer Pastures of the Timan and Bolshezemelskaya Tundras" Agriculture 12, no. 10: 1560. https://doi.org/10.3390/agriculture12101560
APA StyleMenshakova, M., Huber, M., Gainanova, R., Surovets, V., Moiseeva, N., Nizikova, A., & Mashinets, M. (2022). Content of Heavy Metals in the Lichens of Winter Reindeer Pastures of the Timan and Bolshezemelskaya Tundras. Agriculture, 12(10), 1560. https://doi.org/10.3390/agriculture12101560