Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fungal Strains for Production of the Mycotoxins
2.3. Preparation of Fungal Inoculum and Culture Conditions
2.4. Extraction and Purification of Mycotoxins
2.4.1. AFB1
2.4.2. PAT and PA
2.5. Preparation of Mycotoxin Solutions
2.6. Plant Material and Growth Conditions
2.7. Enzymatic Assay of Maize Trxs
2.8. Expression and Purification of Recombinant Trx y1 from Arabidopsis Thaliana
2.9. In Vitro Experiments Using Pure Proteins
2.9.1. In Vitro Effects of the Mycotoxins on Trx y1 Activity
2.9.2. In Vitro Effects of the Mycotoxins on Tr Activity
2.9.3. In Vitro Effects of GSH on the Reactivity of PAT and PA with Trx y1
2.10. Statistical Analysis
3. Results
3.1. Effects of PAT and PA on Maize Seed Germination
3.2. Effects of PAT and PA on Trx Activities of Maize Seedlings
3.3. Reactivity of PAT and PA with Trx y1 In Vitro
3.4. Effects of PAT and PA on Tr Activity In Vitro
3.5. Effects of GSH Addition to Mycotoxin–Trx y1 Mixture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismaiel, A.A.; Papenbrock, J. Mycotoxins: Producing fungi and mechanisms of phytotoxicity. Agriculture 2015, 5, 492–537. [Google Scholar] [CrossRef]
- Blount, W.P. Turkey X Disease. J. Br. Turkey Fed. 1961, 9, 52–61. [Google Scholar]
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit. Contam. Part A 2016, 33, 540–550. [Google Scholar] [CrossRef] [PubMed]
- IARC, International Agency for Research on Cancer. The Agents Classified by the IARC Monographs. 2016. Volume 1–115. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 1 February 2023).
- Frisvad, J.C. A critical review of producers of small lactone mycotoxins: Patulin, penicillic acid and moniliformin. World Mycotoxin J. 2018, 11, 73–100. [Google Scholar] [CrossRef]
- Sinha, K.K.; Kumari, P. Some physiological abnormalities induced by aflatoxin B1 in mung seeds (Vigna radiata var. Pusa Baishakhi). Mycopathologica 1990, 110, 77–79. [Google Scholar] [CrossRef]
- Hasan, H.A.H. Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability. Mycopathologia 1999, 148, 149–155. [Google Scholar] [CrossRef]
- McLean, M. The phytotoxic effects of aflatoxin B1: A review (1984–1994). S. Afr. J. Sci. 1994, 90, 385–390. Available online: https://hdl.handle.net/10520/AJA00382353_5899 (accessed on 1 February 2023).
- Wang, Y.; Peng, X.; Xu, W.; Luo, Y.; Zhao, W. Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. J. Exp. Bot. 2012, 63, 2171–2187. [Google Scholar] [CrossRef]
- Ellis, J.R.; McCalla, T.M. Effects of patulin and method of application on growth stages of wheat. Appl. Microbiol. 1973, 25, 562–566. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Papenbrock, J. The effects of patulin from Penicillium vulpinum on seedling growth, root tip ultrastructure and glutathione content of maize. Eur. J. Plant Pathol. 2014, 139, 497–509. [Google Scholar] [CrossRef]
- Keromnes, J.; Thouvenot, D. Role of penicillic acid in the phytotoxicity of Penicillium cyclopium and Penicillium canescens to the germination of corn seeds. Appl. Environ. Microbiol. 1985, 49, 660–663. [Google Scholar] [CrossRef]
- Sassa, T.; Hayakari, S.; Ikeda, M.; Miura, Y. Plant growth inhibitors produced by fungi. I. Isolation and identification of penicillic acid and dihydropenicillic acid. Agric. Biol. Chem. 1971, 35, 2130–2131. [Google Scholar] [CrossRef]
- Ahmad, A.; Eqbal, M.M. Effect of penicillic acid on some biochemical changes in germinating maize seeds. Geobios 2002, 29, 161–163. [Google Scholar]
- Bando, M.; Hasegawa, M.; Tsuboi, Y.; Miyake, Y.; Shiina, M.; Ito, M.; Handa, H.; Nagai, K.; Kataoka, K. The mycotoxin penicillic acid inhibits Fas ligand-induced apoptosis by blocking self-processing of caspase-8 in death-inducing signaling complex. J. Biol. Chem. 2003, 21, 5786–5793. [Google Scholar] [CrossRef]
- Liu, B.H.; Wu, T.S.; Yu, F.Y.; Su, C.C. Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicol. Sci. 2007, 95, 340–347. [Google Scholar] [CrossRef]
- Polacco, J.C.; Sands, D.C. The mycotoxin patulin inhibits respiration of higher plant cells. Plant Sci. Lett. 1977, 9, 121–128. [Google Scholar] [CrossRef]
- Meyer, Y.; Belin, C.; Delorme-Hinoux, V.; Reichheld, J.P.; Riondet, C. Thioredoxin and glutaredoxin systems in plants: Molecular mechanisms, crosstalks, and functional significance. Antioxid. Redox Sign. 2012, 17, 1124–1160. [Google Scholar] [CrossRef]
- Cheng, F.; Zhou, Y.; Xia, X.; Shi, K.; Zhou, J.; Yu, J. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. J. Exp. Bot. 2014, 65, 4335–4347. [Google Scholar] [CrossRef]
- Kang, Z.; Qin, T.; Zhao, Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019, 706, 32–42. [Google Scholar] [CrossRef]
- Dos Santos, C.V.; Rey, P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006, 11, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.M.; Wong, J.H.; Yee, B.C.; Peters, A.; Kobrehel, K.; Buchanan, B.B. New evidence for a role for thioredoxin h in germination and seedling development. Planta 1996, 200, 100–106. [Google Scholar] [CrossRef]
- Besse, I.; Wong, J.H.; Kobrehel, K.; Buchanan, B.B. Thiocalsin: A thioredoxin- linked, substrate-specific protease dependent on calcium. Proc. Natl. Acad. Sci. USA 1996, 93, 3169–3175. [Google Scholar] [CrossRef]
- Santandrea, G.; Guo, Y.; O’Connell, T.; Thompson, R.D. Post phloem protein trafficking in the maize caryopsis: ZmTRXh1, a thioredoxin specifically expressed in the pedicel parenchyma of Zea mays L., is found predominantly in the placentochalaza. Plant Mol. Biol. 2002, 50, 743–756. [Google Scholar] [CrossRef]
- Serrato, A.J.; Cejudo, F.J. Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 2003, 217, 392–399. [Google Scholar] [CrossRef]
- Ismaiel, A.A.; Papenbrock, J. Effect of patulin from Penicillium vulpinum on the activity of glutathione-S-transferase and selected antioxidative enzymes in maize. Int. J. Environ. Res. Public Health 2017, 14, 825. [Google Scholar] [CrossRef]
- Ashoor, S.H.; Chu, F.S. Inhibition of alcohol and lactic dehydrogenases by patulin and penicillic acid in vitro. Food Cosmet. Toxicol. 1973, 11, 617–624. [Google Scholar] [CrossRef]
- Ashoor, S.H.; Chu, F.S. Inhibition of muscle aldolase by penicillic acid and patulin in vitro. Food Cosmet. Toxicol. 1973, 11, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.A.; Tharwat, N.A. Antifungal activity of silver ion on ultrastructure and production aflatoxin B1 and patulin by two mycotoxigenic strains, Aspergillus flavus OC1 and Penicillium vulpinum CM1. J. Mycol. Méd. 2014, 24, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Siriwardana, M.G.; Lafont, P. Determination of mycophenolic acid, penicillic acid, patulin, sterigmatocystin, and aflatoxins in cheese. Dairy Sci. 1979, 62, 1145–1148. [Google Scholar] [CrossRef]
- Subramanian, T. Colorimetric determination of patulin produced by Penicillium patulum. J. Assoc. Off. Anal. Chem. 1982, 65, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Ciegler, A.; Kurtzman, C.P. Fluorodensitometric assay of penicillic acid. J. Chromatogr. 1970, 51, 511–516. [Google Scholar] [CrossRef]
- Arnér, E.S.; Holmgren, A. Measurement of thioredoxin and thioredoxin reductase. Curr. Protoc. Toxicol. 2005, 24, 7.4.1–7.4.14. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Henne, M.; König, N.; Triulzi, T.; Baroni, S.; Forlani, S.; Scheibe, R.; Papenbrock, J. Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests. FEBS Open Bio 2015, 5, 832–843. [Google Scholar] [CrossRef]
- Bullerman, L.B. Significance of mycotoxins to food safety and human health. J. Food Protect. 1979, 42, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Crisan, E.V. Effects of aflatoxin on seedling growth and ultrastructure in plants. Appl. Microbiol. 1973, 12, 991–1000. [Google Scholar] [CrossRef]
- Yamaji, K.; Fukushi, Y.; Hashidoko, Y.; Tahara, S. Penicillium frequentans from Picea glehnii seedling roots as a possible biological control agent against damping-off. Ecol. Res. 2005, 20, 103–107. [Google Scholar] [CrossRef]
- McLean, M.; Watt, M.P.; Berjak, P.; Dutton, M.F. Aflatoxin B1: Its effects on an in vitro plant system. Food Addit. Contam. 1995, 12, 435–443. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.O.; Bracarense, A.P.F.L.; Oswald, I.P. Mycotoxins and oxidative stress: Where are we? World Mycotoxin J. 2018, 11, 113–134. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network in plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Saxena, N.; Kausar, M.A.; Kumar, R.; Dhawan, A.; Dwivedi, P.D.; Das, M. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p53 and p21/WAF1 proteins in skin of mice. Toxicol. Appl. Pharmacol. 2009, 234, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Bashir, H.; Ibrahim, M.M.; Bagheri, R.; Ahmad, J.; Arif, I.A.; Baig, M.A.; Qureshi, M.I. Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants 2015, 7, plv001. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, X.; Li, G.; Xu, Y.; Xia, X.; Wang, Q. Oxidative stress is involved in patulin induced apoptosis in HEK 293 cells. Toxicon 2015, 94, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, B.B.; Balmer, Y. Redox regulation: A broadening horizon. Annu. Rev. Plant Biol. 2005, 56, 187–220. [Google Scholar] [CrossRef]
- Fernández-Trijueque, J.; Barajas-López, J.D.; Chueca, A.; Cazalis, R.; Sahrawy, M.; Serrato, A.J. Plastid thioredoxins f and m are related to the developing and salinity response of post-germinating seeds of Pisum sativum. Plant Sci. 2012, 188–189, 82–88. [Google Scholar] [CrossRef]
- Balmer, Y.; Vensel, W.H.; Cai, N.; Manieri, W.; Schurmann, P.; Hurkman, W.J.; Buchanan, B.B. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc. Natl. Acad. Sci. USA 2006, 103, 2988–2993. [Google Scholar] [CrossRef]
- Bowsher, C.G.; Dunbar, B.; Emes, M.J. The purification and properties of ferredoxin-NADP(+)-oxidoreductase from roots of Pisum sativum L. Protein Expr. Purif. 1993, 4, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Barajas-López, J.D.; Serrato, A.J.; Olmedilla, A.; Chueca, A.; Sahrawy, M. Localization in roots and flowers of pea chloroplastic thioredoxin f and thioredoxin m proteins reveals new roles in nonphotosynthetic organs. Plant Physiol. 2007, 145, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, S.D.; Collin, V.; Keryer, E.; Quesada, A.; Miginiac-Maslow, M. Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett. 2003, 543, 87–92. [Google Scholar] [CrossRef]
- Da, Q.; Wang, P.; Wang, M.; Sun, T.; Jin, H.; Liu, B.; Wang, J.; Grimm, B.; Wang, H.-B. Thioredoxin and NADPH-dependent thioredoxin reductase C regulation of tetrapyrrole Biosynthesis. Plant Physiol. 2017, 175, 652–666. [Google Scholar] [CrossRef]
- Labarrere, C.A.; Kassab, G.S. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front. Nutr. 2022, 9, 1007816. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef] [PubMed]
- Arafat, W.; Kern, D.; Dirheimer, G. Inhibition of aminoacyl-tRNA synthetases by the mycotoxin patulin. Chem. Biol. Interact. 1985, 56, 333–349. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin: Trx y1 Ratio | Inhibition (%) of Trx y1 Activity | ||
---|---|---|---|
PAT | PA | AFB1 | |
0:0 (control) | 0.0 e | 0.0 d | 0.0 |
1:1 | 35.5 ± 4.33 d,* | 31.1 ± 2.63 c | 0.0 |
3:1 | 43.1 ± 4.17 c,* | 37.8 ± 2.11 b | 0.0 |
6:1 | 64.5 ± 0.58 b,* | 41.9 ± 1.54 b | 0.0 |
9:1 | 92.9 ± 0.89 a,* | 49.1 ± 3.58 a | 0.0 |
Mycotoxin: TR Ratio | Inhibition (%) of Tr Activity | ||
---|---|---|---|
PAT | PA | AFB1 | |
0:0 | 0.0 e | 0.0 e | 0.0 |
1:1 | 9.8 ± 1.27 d | 8.3 ± 1.73 d | 0.0 |
3:1 | 17.9 ± 2.04 c,* | 14.6 ± 1.79 c | 0.0 |
6:1 | 23.8 ± 2.65 b | 20.8 ± 0.85 b | 0.0 |
9:1 | 30.5 ± 1.97 a,* | 25.1 ± 2.53 a | 0.0 |
GSH:Mycotoxin:Trx y1 | Inhibition (%) of Trx y1 Activity | |||
---|---|---|---|---|
PAT | PA | |||
Simult. * | Consec. | Simult. * | Consec. | |
0:9:1 (control) | 92.2 ± 1.46 a | 42.8 ± 1.39 a | 49.5 ± 1.52 a | 30.6 ± 0.50 a |
9:9:1 | 58.7 ± 2.28 b | 26.7 ± 0.70 b | 38.5 ± 1.29 b | 23.3 ± 0.49 b |
18:9:1 | 54.9 ± 1.69 c | 24.2 ± 0.94 c | 27.6 ± 1.75 c | 20.7 ± 0.69 c |
27:9:1 | 49.4 ± 1.39 d | 21.7 ± 0.76 d | 22.8 ± 3.66 d | 18.8 ± 0.75 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismaiel, A.A.; Papenbrock, J. Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings. Agriculture 2023, 13, 950. https://doi.org/10.3390/agriculture13050950
Ismaiel AA, Papenbrock J. Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings. Agriculture. 2023; 13(5):950. https://doi.org/10.3390/agriculture13050950
Chicago/Turabian StyleIsmaiel, Ahmed A., and Jutta Papenbrock. 2023. "Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings" Agriculture 13, no. 5: 950. https://doi.org/10.3390/agriculture13050950
APA StyleIsmaiel, A. A., & Papenbrock, J. (2023). Thioredoxin Is a New Target for the Phytotoxicity of Small Lactone Mycotoxins, Patulin and Penicillic Acid on Maize Seedlings. Agriculture, 13(5), 950. https://doi.org/10.3390/agriculture13050950