Traits Related to Heat Stress in Phaseolus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Study Sites and Experimental Designs
2.3. Screening for Resistance to Heat Stress
2.4. Phenological Traits
2.5. Morphological Traits
2.6. Agronomical Traits
2.7. Physiological Traits
2.8. Data Analyses
3. Results
3.1. Climatic Parameters
3.2. Soil Properties
3.3. Phenological Traits
3.4. Morphological Traits
3.5. Agronomical Traits
3.6. Physiological Traits
3.7. Screening for Resistance to Heat Stress
3.8. Direct and Indirect Relationships of Measured Traits with Heat Resistance
3.9. Principal Component Analysis
3.10. Agglomerative Hierarchical Clustering
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freytag, G.F.; Debouck, D.G. Taxonomy, Distribution, and Ecology of the Genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America Central America; Botanical Research Institute of Texas (BRIT): Fort Worth, TX, USA, 2002; Volume 23, p. 300. [Google Scholar]
- Debouck, D.G. Phaseolus beans (Leguminosae, Phaseoleae): A checklist and notes on their taxonomy and ecology. J. Bot. Res. Inst. Tex. 2021, 15, 73–111. [Google Scholar] [CrossRef]
- Delgado-Salinas, A.; Bibler, R.; Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 2006, 31, 779–791. [Google Scholar] [CrossRef]
- Singh, S.P. Common Bean Improvement in the Twenty-First Century; Springer Science & Business Media: Berlin, Germany, 2013; Volume 7. [Google Scholar]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Alcázar-Valle, M.; García-Morales, S.; Mojica, L.; Morales-Hernández, N.; Sánchez-Osorio, E.; Flores-López, L.; Enríquez-Vara, J.N.; Lugo-Cervantes, E. Nutritional, antinutritional compounds and nutraceutical significance of native bean species (Phaseolus spp.) of mexican cultivars. Agriculture 2021, 11, 1031. [Google Scholar] [CrossRef]
- Celmeli, T.; Sari, H.; Canci, H.; Sari, D.; Adak, A.; Eker, T.; Toker, C. The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 2018, 8, 166. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database; FAO: Rome, Italy, 2022. [Google Scholar]
- Miklas, P.N.; Kelly, J.D.; Beebe, S.E.; Blair, M.W. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 2006, 147, 105–131. [Google Scholar] [CrossRef]
- Porch, T.G.; Beaver, J.S.; Debouck, D.G.; Jackson, S.; Kelly, J.D.; Dempewolf, H. Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 2013, 3, 433–461. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Ahmad, P. Legumes and breeding under abiotic stress: An overview. In Legumes under Environmental Stress: Yield, Improvement and Adaptations; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–20. [Google Scholar]
- Bomers, S.; Sehr, E.M.; Adam, E.; von Gehren, P.; Hansel-Hohl, K.; Prat, N.; Ribarits, A. Towards heat tolerant runner bean (Phaseolus coccineus L.) by utilizing plant genetic resources. Agronomy 2022, 12, 612. [Google Scholar] [CrossRef]
- Suárez, J.C.; Contreras, A.T.; Anzola, J.A.; Vanegas, J.I.; Rao, I.M. Physiological characteristics of cultivated tepary bean (Phaseolus acutifolius A. Gray) and its wild relatives grown at high temperature and acid soil stress conditions in the amazon region of colombia. Plants 2021, 11, 116. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Kumar, J.; Kumar, S.; Singh, S.; Siddique, K.H.; Nayyar, H. Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris Medikus) genotypes varying in heat and drought sensitivity. Front. Plant Sci. 2017, 8, 1776. [Google Scholar] [CrossRef]
- Prasad, P.; Staggenborg, S.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2008; Volume 1, pp. 301–355. [Google Scholar]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.-D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef]
- Parankusam, S.; Adimulam, S.S.; Bhatnagar-Mathur, P.; Sharma, K.K. Nitric oxide (NO) in plant heat stress tolerance: Current knowledge and perspectives. Front. Plant Sci. 2017, 8, 1582. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.; Hafeez, M.B.; Ghafaar, A.; Kausar, A.; Al Zeidi, M.; Siddique, K.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Traub, J.; Porch, T.; Naeem, M.; Urrea, C.A.; Austic, G.; Kelly, J.D.; Loescher, W. Screening for heat tolerance in Phaseolus spp. Using multiple methods. Crop Sci. 2018, 58, 2459–2469. [Google Scholar] [CrossRef]
- Porch, T.; Jahn, M. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 2001, 24, 723–731. [Google Scholar] [CrossRef]
- Porch, T.G. Application of stress indices for heat tolerance screening of common bean. J. Agron. Crop Sci. 2006, 192, 390–394. [Google Scholar] [CrossRef]
- Stefanov, D.; Petkova, V.; Denev, I.D. Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using jip-test. Sci. Hortic. 2011, 128, 1–6. [Google Scholar] [CrossRef]
- Singh, M.; Bisht, I.S.; Dutta, M. Broadening the Genetic Base of Grain Legumes; Springer: New Delhi, India, 2014; p. 215. [Google Scholar]
- Chavez-Arias, C.C.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Evaluation of heat stress period duration and the interaction of daytime temperature and cultivar on common bean. Environ. Exp. Bot. 2018, 155, 600–608. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, N.; Verma, A.; Singh, H.; Siddique, K.H.; Singh, N.P. Novel approaches to mitigate heat stress impacts on crop growth and development. Plant Physiol. Rep. 2020, 25, 627–644. [Google Scholar] [CrossRef]
- Vargas, Y.; Mayor-Duran, V.M.; Buendia, H.F.; Ruiz-Guzman, H.; Raatz, B. Physiological and genetic characterization of heat stress effects in a common bean RIL population. PLoS ONE 2021, 16, e0249859. [Google Scholar] [CrossRef]
- Yahaya, M.A.; Shimelis, H. Drought stress in sorghum: Mitigation strategies, breeding methods and technologies—A review. J. Agron. Crop Sci. 2022, 208, 127–142. [Google Scholar] [CrossRef]
- López-Hernández, F.; Cortés, A.J. Last-generation genome–environment associations reveal the genetic basis of heat tolerance in common bean (Phaseolus vulgaris L.). Front. Genet. 2019, 10, 954. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group ii to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; p. 3056. [Google Scholar]
- Darkwa, K.; Ambachew, D.; Mohammed, H.; Asfaw, A.; Blair, M.W. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in ethiopia. Crop J. 2016, 4, 367–376. [Google Scholar] [CrossRef]
- Neto, N.B.M.; Prioli, M.R.; Gatti, A.B.; Cardoso, V.J.M. Temperature effects on seed germination in races of common beans (Phaseolus vulgaris L.). Acta Scientiarum. Agron. 2006, 28, 155–164. [Google Scholar]
- Asfaw, D.; Neka, M. Factors affecting adoption of soil and water conservation practices: The case of wereillu woreda (district), south wollo zone, amhara region, ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 273–279. [Google Scholar] [CrossRef]
- Ambachew, D.; Mekbib, F.; Asfaw, A.; Beebe, S.E.; Blair, M.W. Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly. Crop J. 2015, 3, 305–316. [Google Scholar] [CrossRef]
- Wright, S. The theory of path coefficients a reply to Niles’s criticism. Genetics 1923, 8, 239. [Google Scholar] [CrossRef]
- Agbeleye, O.A.; Akinyosoye, S.T.; Adetumbi, J.A. Correlation, path coefficient and principal component analysis of yield components in mung bean [Vigna radiata (L.) Wilcezk] accessions. Trop. Agric. 2020, 97, 212–218. [Google Scholar]
- Blair, M.W.; Soler, A.; Cortes, A.J. Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE 2012, 7, e49488. [Google Scholar] [CrossRef]
- Buitrago-Bitar, M.A.; Cortés, A.J.; López-Hernández, F.; Londoño-Caicedo, J.M.; Muñoz-Florez, J.E.; Muñoz, L.C.; Blair, M.W. Allelic diversity at abiotic stress responsive genes in relationship to ecological drought indices for cultivated tepary bean, Phaseolus acutifolius a. Gray, and its wild relatives. Genes 2021, 12, 556. [Google Scholar] [CrossRef]
- Canci, H.; Toker, C. Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J. Agron. Crop Sci. 2009, 195, 47–54. [Google Scholar] [CrossRef]
- IBPGR. Descriptors for Phaseolus vulgaris; IBPGR: Rome, Italy, 1982; p. 37. [Google Scholar]
- Marler, T.E.; Lawton, P.D. Error in interpreting field chlorophyll fluorescence measurements: Heat gain from solar radiation. HortScience 1994, 29, 1172–1174. [Google Scholar] [CrossRef]
- Eker, T.; Sari, H.; Sari, D.; Canci, H.; Arslan, M.; Aydinoglu, B.; Ozay, H.; Toker, C. Advantage of multiple pods and compound leaf in kabuli chickpea under heat stress conditions. Agronomy 2022, 12, 557. [Google Scholar] [CrossRef]
- Lê, S.; Josse, J.; Husson, F. Factominer: An r package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Bishop, J.; Potts, S.G.; Jones, H.E. Susceptibility of faba bean (Vicia faba L.) to heat stress during floral development and anthesis. J. Agron. Crop Sci. 2016, 202, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Bokshi, A.I.; Thistlethwaite, R.J.; Chaplin, E.D.; Kirii, E.; Trethowan, R.M.; Tan, D.K. Physiological traits for evaluating heat-tolerance of australian spring wheat cultivars at elevated CO2. J. Agron. Crop Sci. 2022, 208, 178–196. [Google Scholar] [CrossRef]
- Tamindžić, G.; Ignjatov, M.; Miljaković, D.; Červenski, J.; Milošević, D.; Nikolić, Z.; Vasiljević, S. Seed priming treatments to improve heat stress tolerance of garden pea (Pisum sativum L.). Agriculture 2023, 13, 439. [Google Scholar] [CrossRef]
- Devi, P.; Jha, U.C.; Prakash, V.; Kumar, S.; Parida, S.K.; Paul, P.J.; Prasad, P.; Sharma, K.D.; Siddique, K.H.; Nayyar, H. Response of physiological, reproductive function and yield traits in cultivated chickpea (Cicer arietinum L.) under heat stress. Front. Plant Sci. 2022, 1148, 880519. [Google Scholar] [CrossRef]
- Liu, M.; Sheng, D.; Liu, X.; Wang, Y.; Hou, X.; Wang, Y.; Wang, P.; Guan, L.; Dong, X.; Huang, S. Dissecting heat tolerance and yield stability in maize from greenhouse and field experiments. J. Agron. Crop Sci. 2022, 208, 348–361. [Google Scholar] [CrossRef]
- Lohani, N.; Singh, M.B.; Bhalla, P.L. Short-term heat stress during flowering results in a decline in canola seed productivity. J. Agron. Crop Sci. 2021, 208, 486–496. [Google Scholar] [CrossRef]
- Ullah, A.; Nadeem, F.; Nawaz, A.; Siddique, K.H.; Farooq, M. Heat stress effects on the reproductive physiology and yield of wheat. J. Agron. Crop Sci. 2022, 208, 1–17. [Google Scholar] [CrossRef]
- Konsens, I.; Ofir, M.; Kigel, J. The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann. Bot. 1991, 67, 391–399. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Takeno, K. Stress-induced flowering: The third category of flowering response. J. Exp. Bot. 2016, 67, 4925–4934. [Google Scholar] [CrossRef] [PubMed]
- Begcy, K.; Sandhu, J.; Walia, H. Transient heat stress during early seed development primes germination and seedling establishment in rice. Front. Plant Sci. 2018, 9, 1768. [Google Scholar] [CrossRef]
- Dubal, I.; Troyjack, C.; Aisenberg, G.R.; Koch, F.; Szareski, V.J.; Pimentel, J.R.; Nardino, M.; Carvalho, I.; Olivoto, T.; Souza, V. Effect of temperature on bean seed germination: Vigor and isozyme expression. Am. J. Agric. Res. 2016, 1, 1–9. [Google Scholar]
- Toker, C.; Lluch, C.; Tejera, N.A.; Serraj, R.; Siddique, K.H.M. Abiotic stresses. In Chickpea Breeding and Management; Yadav, S.S., Chen, W., Eds.; CAB Int.: Wallingford, UK, 2007; pp. 474–496. [Google Scholar]
- Matías, J.; Rodríguez, M.J.; Cruz, V.; Calvo, P.; Reguera, M. Heat stress lowers yields, alters nutrient uptake and changes seed quality in quinoa grown under mediterranean field conditions. J. Agron. Crop Sci. 2021, 207, 481–491. [Google Scholar] [CrossRef]
- Bozoğlu, H.; Sözen, Ö. Some agronomic properties of the local population of common bean (Phaseolus vulgaris L.) of artvin province. Turk. J. Agric. For. 2007, 31, 327–334. [Google Scholar]
- Kornegay, J.; White, J.W.; de la Cruz, O.O. Growth habit and gene pool effects on inheritance of yield in common bean. Euphytica 1992, 62, 171–180. [Google Scholar] [CrossRef]
- Repinski, S.; Kwak, M.; Gepts, P. The common bean growth habit gene PvTFL1y is a functional homolog of arabidopsis tfl1. Theor. Appl. Genet. 2012, 124, 1539–1547. [Google Scholar] [CrossRef]
- Michelangeli, J.A.C.; Ricaurte, J.; Sinclair, T.R.; Rao, I.M.; Beebe, S.E. Influence of plant density and growth habit of common bean on leaf area development and n accumulation. J. Crop Improv. 2019, 33, 620–632. [Google Scholar] [CrossRef]
- Cortés, A.J.; Blair, M.W. Genotyping by sequencing and genome–environment associations in wild common bean predict widespread divergent adaptation to drought. Front. Plant Sci. 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.J.; Skeen, P.; Blair, M.W.; Chacón-Sánchez, M.I. Does the genomic landscape of species divergence in Phaseolus beans coerce parallel signatures of adaptation and domestication? Front. Plant Sci. 2018, 9, 1816. [Google Scholar] [CrossRef] [PubMed]
- Yönten Balaban, A.; Akman, K. Climate change adaptation policies of metropolitan municipalities in Turkey. Vision. E-J.Vizyoner Derg. 2022, 13, 1132–1149. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Remenyik, J.; Fári, M. Studies on the drought and heat stress response of green bean (Phaseolus vulgaris L.) varieties under phytotronic conditions. Acta Agron. Hung. 2008, 56, 321–328. [Google Scholar] [CrossRef]
- Rainey, K.M.; Griffiths, P.D. Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.). J. Am. Soc. Hortic. Sci. 2005, 130, 700–706. [Google Scholar] [CrossRef]
- da Silva, D.A.; dos Reis, R.L.d.M.; Gonçalves, J.G.R.; Carbonell, S.A.M.; Chiorato, A.F. Effect of heat stress on common bean under natural growing conditions in three locations in different climate zones in the state of so paulo, brazil. J. Plant Breed. Crop Sci. 2018, 10, 134–145. [Google Scholar]
- Mohapatra, C.; Chand, R.; Tiwari, J.K.; Singh, A.K. Effect of heat stress during flowering and pod formation in pea (Phaseolus vulgaris L.). Physiol. Mol. Biol. Plants 2020, 26, 1119–1125. [Google Scholar] [CrossRef]
- Shonnard, G.C.; Gepts, P. Genetics of heat tolerance during reproductive development in common bean. Crop Sci. 1994, 34, 1168–1175. [Google Scholar] [CrossRef]
- Essemine, J.; Ammar, S.; Bouzid, S. Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. J. Biol. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F.; Osorio-Rodriguez, D. Predicting thermal adaptation by looking into populations’ genomic past. Front. Genet. 2020, 11, 564515. [Google Scholar] [CrossRef] [PubMed]
- Suárez, J.C.; Polanía, J.A.; Contreras, A.T.; Rodríguez, L.; Machado, L.; Ordoñez, C.; Beebe, S.; Rao, I.M. Adaptation of common bean lines to high temperature conditions: Genotypic differences in phenological and agronomic performance. Euphytica 2020, 216, 1–20. [Google Scholar] [CrossRef]
- Burbano-Erazo, E.; León-Pacheco, R.I.; Cordero-Cordero, C.C.; López-Hernández, F.; Cortés, A.J.; Tofiño-Rivera, A.P. Multi-environment yield components in advanced common bean (Phaseolus vulgaris L.)× tepary bean (P. acutifolius A. Gray) interspecific lines for heat and drought tolerance. Agronomy 2021, 11, 1978. [Google Scholar] [CrossRef]
- Beebe, S. Common bean breeding in the tropics. In Plant breeding reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 357–426. [Google Scholar]
- Beebe, S.E.; Rao, I.M.; Cajiao, C.; Grajales, M. Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci. 2008, 48, 582–592. [Google Scholar] [CrossRef]
- Omae, H.; Kumar, A.; Kashiwaba, K.; Shono, M. Influence of high temperature on morphological characters, biomass allocation, and yield components in snap bean (Phaseolus vulgaris L.). Plant Prod. Sci. 2006, 9, 200–205. [Google Scholar] [CrossRef]
- Rao, I.; Beebe, S.; Polanía, J.; Grajales, M.; Cajiao, C.; García, R.; Ricaurte, J.; Rivera, M. Physiological basis of improved drought resistance in common bean: The contribution of photosynthate mobilization to grain. In Proceedings of the Interdrought III: The 3rd International Conference on Integrated Approaches to Improve Crop Production under Drought-Prone Environments, Shanghai, China, 11–16 October 2009; pp. 11–16. [Google Scholar]
- Chrigui, N.; Sari, D.; Sari, H.; Eker, T.; Cengiz, M.F.; Ikten, C.; Toker, C. Introgression of resistance to leafminer (Liriomyza cicerina Rondani) from Cicer reticulatum Ladiz. To C. Arietinum L. and relationships between potential biochemical selection criteria. Agronomy 2020, 11, 57. [Google Scholar] [CrossRef]
- Petkova, V.; Denev, I.D.; Cholakov, D.; Porjazov, I. Field screening for heat tolerant common bean cultivars (Phaseolus vulgaris L.) by measuring of chlorophyll fluorescence induction parameters. Sci. Hortic. 2007, 111, 101–106. [Google Scholar] [CrossRef]
- Rana, J.; Sharma, T.; Tyagi, R.; Chahota, R.; Gautam, N.; Singh, M.; Sharma, P.; Ojha, S. Characterisation of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the indian gene bank for phenological, morphological and agricultural traits. Euphytica 2015, 205, 441–457. [Google Scholar] [CrossRef]
- Kettler, B.A.; Carrera, C.S.; Nalli Sonzogni, F.D.; Trachsel, S.; Andrade, F.H.; Neiff, N. High night temperature during maize post-flowering increases night respiration and reduces photosynthesis, growth and kernel number. J. Agron. Crop Sci. 2022, 208, 335–347. [Google Scholar] [CrossRef]
- Yun, H.; Cai, L.; Du, D.; Guo, Y.; Sun, H.; Zhong, X.; Peng, X.; Dai, J.; Zhang, C. Fine mapping and phenotype assessment of the novel lesion mimic and early senescence lmes5 mutant in rice. Euphytica 2022, 218, 1–13. [Google Scholar] [CrossRef]
- Zhou, R.; Hyldgaard, B.; Yu, X.; Rosenqvist, E.; Ugarte, R.M.; Yu, S.; Wu, Z.; Ottosen, C.-O.; Zhao, T. Phenotyping of faba beans (Vicia faba L.) under cold and heat stresses using chlorophyll fluorescence. Euphytica 2018, 214, 1–13. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping common beans for adaptation to drought. Front. Physiol. 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.J.; López-Hernández, F. Harnessing crop wild diversity for climate change adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef]
- Akgun, D.; Canci, H. Selection of Faba Bean (Vicia faba L.) Genotypes for High Yield, Essential Amino Acids and Low Untinutritional Factors. Agriculture, 2023; accepted. [Google Scholar]
Traits * | DF | DP | PH | NS | LL | LW | CC | Fv/Fm | PB | PY |
---|---|---|---|---|---|---|---|---|---|---|
DF | 0.058 | 0.474 * | −0.040 | −0.006 * | −0.018 | −0.026 | −0.019 | 0.008 | 0.023 | −0.006 |
DP | 0.491 * | 0.073 | 0.119 * | −0.073 | 0.016 | 0.053 | −0.025 | −0.024 | 0.051 | 0.017 |
PH | −0.049 | 0.140 * | 0.014 | 0.279 * | 0.422 * | −0.133 * | 0.103 * | 0.065 | 0.285 * | 0.010 |
NS | −0.005 | −0.061 | 0.199 * | −0.185 * | −0.108 * | 0.235 * | −0.033 | 0.024 | −0.095 * | 0.054 |
LL | −0.022 | 0.019 | 0.430 * | −0.155 * | 0.230 * | −0.241 * | −0.005 | 0.280 * | 0.191 * | 0.000 |
LW | −0.023 | 0.046 | −0.098 * | 0.244 * | −0.175 * | −0.138 * | 0.085 * | 0.051 | 0.081 * | 0.034 |
CC | −0.015 | −0.019 | 0.065 * | −0.029 | −0.003 | 0.073 * | −0.073 * | −0.003 | −0.020 | −0.004 |
Fv/Fm | 0.007 | −0.019 | 0.044 | 0.023 | 0.188 * | 0.047 | −0.003 | −0.083 * | −0.042 | −0.008 |
PB | 0.021 | 0.045 | 0.215 * | −0.101 * | 0.141 * | 0.083 * | −0.024 | −0.047 | −0.058 * | 0.018 |
PY | −0.005 | 0.012 | 0.006 | 0.048 | 0.000 | 0.029 | −0.004 | −0.007 | 0.015 | −0.010 |
Traits * | DF | DP | PH | NS | LL | LW | CC | Fv/Fm | PB | PY |
---|---|---|---|---|---|---|---|---|---|---|
DF | 0.014 | 0.165 * | 0.013 | −0.089 * | −0.055 * | 0.036 | 0.119 * | −0.064 | 0.039 | 0.023 |
DP | 0.164 * | −0.057 | 0.008 | −0.056 | −0.033 | 0.003 | 0.143 * | 0.081 * | −0.024 | −0.009 |
PH | 0.013 | 0.009 | −0.271 * | 0.104 * | −0.014 | 0.026 | 0.113 * | 0.151 * | 0.129 * | 0.002 |
NS | −0.092 | −0.058 | 0.106 * | −0.207 * | 0.031 | −0.008 | 0.057 | 0.066 | 0.198 * | 0.007 |
LL | −0.214 * | −0.128 | −0.052 | 0.116 | −0.208 * | 0.864 * | −0.087 | 0.195 * | −0.034 | −0.017 |
LW | 0.140 | 0.013 | 0.098 | −0.032 | 0.863 * | 0.015 | 0.227 * | −0.102 | 0.106 | −0.012 |
CC | 0.129 * | 0.157 * | 0.121 * | 0.061 | −0.024 | 0.064 * | −0.140 * | −0.101 * | 0.210 * | 0.015 |
Fv/Fm | −0.062 | 0.079 * | 0.144 * | 0.062 | 0.049 * | −0.025 | −0.090 * | −0.040 | 0.010 | −0.025 |
PB | 0.042 | −0.026 | 0.137 * | 0.208 * | −0.009 | 0.029 | 0.207 * | 0.011 | −0.146 * | −0.002 |
PY | 0.021 | −0.008 | 0.002 | 0.006 | −0.004 | −0.003 | 0.012 | −0.023 | −0.002 | −0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tene, T.M.; Sari, H.; Canci, H.; Maaruf, A.; Eker, T.; Toker, C. Traits Related to Heat Stress in Phaseolus Species. Agriculture 2023, 13, 953. https://doi.org/10.3390/agriculture13050953
Tene TM, Sari H, Canci H, Maaruf A, Eker T, Toker C. Traits Related to Heat Stress in Phaseolus Species. Agriculture. 2023; 13(5):953. https://doi.org/10.3390/agriculture13050953
Chicago/Turabian StyleTene, Thierry Michel, Hatice Sari, Huseyin Canci, Amar Maaruf, Tuba Eker, and Cengiz Toker. 2023. "Traits Related to Heat Stress in Phaseolus Species" Agriculture 13, no. 5: 953. https://doi.org/10.3390/agriculture13050953
APA StyleTene, T. M., Sari, H., Canci, H., Maaruf, A., Eker, T., & Toker, C. (2023). Traits Related to Heat Stress in Phaseolus Species. Agriculture, 13(5), 953. https://doi.org/10.3390/agriculture13050953