Technical Efficiency of Rice Production in the Upper North of Thailand: Clustering Copula-Based Stochastic Frontier Analysis
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. The K-Means Clustering Algorithm of the Unsupervised Machine Learning
3.2. Stochastic Frontier Model
3.3. Copula
3.4. Copula-Based Stochastic Frontier Model
4. Results
4.1. The Estimation of the k-Mean Clustering Algorithm
4.2. The Estimation of the Copula-Based Stochastic Frontier Model
4.3. The Estimation of the Technical Efficiency
5. Conclusions and Policy Recommendation
6. Limitations and Future Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mabe, F.N.; Donkoh, S.A.; Al-Hassan, S. Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Meta Frontier Approach. Int. Sch. Sci. Res. Innov. 2018, 12, 223–232. [Google Scholar]
- Bravo-Ureta, B.E.; Higgins, D.; Arslan, A. Irrigation Infrastructure and Farm Productivity in the Philippines: A stochastic Meta-Frontier Analysis. World Dev. 2020, 135, 105073. [Google Scholar] [CrossRef]
- Obianefo, C.A.; Ng’ombe, J.N.; Mzyece, A.; Masasi, B.; Obiekwe, N.J.; Anumudu, O.O. Technical Efficiency and Technological Gaps of Rice Production in Anambra State. Niger. Agric. 2021, 11, 1240. [Google Scholar] [CrossRef]
- Valerien, O.P.; Areal, F.J.; Singbo, A.; McKinley, J.; Kei Kajisae, K. Spatial Dependency and Technical Efficiency: An Application of a Bayesian Stochastic Frontier Model to Irrigated and Rainfed Rice Farmers in Bohol. Philipp. Agric. Econ. 2018, 49, 3. [Google Scholar]
- Singvejsakul, J.; Intapan, C.; Chaiboonsri, C.; Permsiri, R. Bayesian Stochastic Frontier Analysis of Agricultural productivity efficiency in CLMV. J. Phys. Conf. Ser. 2021, 1936, 012006. [Google Scholar] [CrossRef]
- Pedroso, R.; Tran, D.H.; Viet, T.Q.; Van Le, A.; Dang, K.T.; Le, K.P. Technical efficiency of rice production in the delta of the Vu Gia Thu Bon river basin, Central Vietnam. World Dev. Perspect. 2018, 9, 18–26. [Google Scholar] [CrossRef]
- Nunti, C.; Boonyakunakorn, P.; Sriboonchitta, S. Technical Efficiency of Rice Production in Thailand: Copula-based Stochastic Frontier Model. J. Phys. Conf. Ser. 2019, 1324, 012107. [Google Scholar] [CrossRef]
- Jaehyun, K.; Donghwan, A. Measuring the Effect of Extreme Weather on Rice Production Efficiency using Zero-inefficiency Stochastic Frontier Model, Agricultural and Applied Economics Association. In Proceedings of the 2020 Annual Meeting, Kansas City, MO, USA, 26–28 July 2020. [Google Scholar]
- Ojo, T.O.; Baiyegunhi, L.J.S. Impact of Climate Change Adaptation Strategies on Rice Productivity in South-West, Nigeria: An Endogeneity Corrected Stochastic Frontier Model. Sci. Total Environ. 2020, 745, 141151. [Google Scholar] [CrossRef]
- Wu, W. Estimation of Technical Efficiency and Output Growth Decomposition for Small-Scale Rice Farmers in Eastern India. J. Agribus. Dev. Emerg. Econ. 2020, 10, 2. [Google Scholar]
- Liu, J.; Sriboonchitta, S.; Wiboonpongse, A.; Denceux, T. A Trivariate Gaussian Copula Stochastic Frontier Model with Sample Selection. Int. J. Approx. Reason. 2021, 137, 181–198. [Google Scholar] [CrossRef]
- Khan, D.; Ali, S.; Khan, A.; Waqas, M.; Khan, S.U. Technical Efficiency of Maize in District Lakki Marwat of Khyber Pakhtunkhwa, Pakistan. Sarhad J. Agric. 2020, 36, 402. [Google Scholar] [CrossRef]
- Bahadur, R.; Chandel, S.; Khan, A.; Li, X.; Xia, X. Farm-Level Technical Efficiency and Its Determinants of Rice Production in Indo-Gangetic Plains: A Stochastic Frontier Model Approach. Sustainability 2022, 14, 2267. [Google Scholar]
- Koengkan, M.; Fuinhas, J.A.; Kazemzadeh, E.; Osmani, F.; Alavijeh, N.K.; Teixeira, M. Measuring the economic efficiency performance in Latin American and Caribbean countries: An empirical evidence from stochastic production frontier and data envelopment analysis. Int. Econ. 2022, 169, 43–54. [Google Scholar] [CrossRef]
- Wiboonpongse, A.; Liu, J.; Sriboonchitta, S.; Denoeux, T. Modeling dependence between error components of the stochastic frontier model using copula: Application to intercrop coffee production in Northern Thailand. Int. J. Approx. Reason. 2015, 65, 34–44. [Google Scholar] [CrossRef]
- Oyelade, O.J.; Oladipupo, O.O.; Obagbuwa, I.C. Application of k-Means Clustering algorithm for prediction of students’ academic performance. Int. J. Comput. Sci. Inf. Secur. 2010, 7, 292–295. [Google Scholar]
- Li, Y.; Wu, H. A clustering method based on K-Means algorithm. Phys. Procedia. 2012, 25, 1104–1109. [Google Scholar] [CrossRef] [Green Version]
- Chaovanapoonphol, Y. The Impact of Financial Services on the Performance of Rice Farmers in the Upper North of Thailand. Ph.D. Thesis, University of New England, Armidale, Australia, 2006. [Google Scholar]
Variable | Sample Mean | Sample Standard Deviation | Minimum | Maximum | ||||
---|---|---|---|---|---|---|---|---|
CM | CR | CM | CR | CM | CR | CM | CR | |
TPP (kgs) | 5383.27 | 8034.49 | 4038.21 | 4606.06 | 224 | 2000 | 49,000 | 23,000 |
AMR (rai) | 9.19 | 13.63 | 6.85 | 7.98 | 1 | 3 | 70 | 45 |
TSD (kgs) | 74.86 | 104.75 | 62.51 | 58.25 | 5 | 20 | 560 | 285 |
TCF (kgs) | 285.30 | 511.92 | 345.01 | 502.72 | 0 | 0 | 6200 | 3000 |
TCP (baht) | 599.38 | 1060.85 | 728.77 | 953.94 | 0 | 0 | 8800 | 4110 |
TLA (man-hours) | 392.57 | 490.95 | 555.64 | 520.38 | 8 | 60 | 6560 | 3360 |
SPEN (baht) | 9152.71 | 15,965.38 | 11,215.88 | 15,168.70 | 0 | 0 | 100,000 | 61,250 |
TVP (baht) | 3335.65 | 30,288.06 | 4137.65 | 14,310.13 | 0 | 14,314.28 | 18,000 | 76,430 |
Group | Observation |
---|---|
First group | 591 |
Second group | 65 |
Variable | Sample Mean | Sample Standard Deviation | Minimum | Maximum | ||||
---|---|---|---|---|---|---|---|---|
First | Second | First | Second | First | Second | First | Second | |
TPP (kgs) | 5686.67 | 5612.58 | 4580.16 | 3708.59 | 500 | 224 | 49,000 | 23,400 |
AMR (rai) | 9.13 | 10.15 | 7.27 | 6.86 | 1 | 2 | 70 | 38 |
TSD (kgs) | 76.39 | 79.20 | 64.78 | 60.49 | 5 | 10 | 560 | 450 |
TCF (kgs) | 276.60 | 339.54 | 286.83 | 435.65 | 0 | 0 | 2100 | 6200 |
TCP (baht) | 785.69 | 502.95 | 769.56 | 735.06 | 0 | 0 | 4340 | 8800 |
TLA (man-hours) | 328.25 | 477.64 | 490.50 | 600.13 | 8 | 16 | 5600 | 6560 |
SPEN (baht) | 9503.84 | 10,135.62 | 12,986.23 | 10,523.47 | 0 | 0 | 100,000 | 67,500 |
TVP (baht) | 5573.63 | 6482.72 | 8940.82 | 11,011.71 | 0 | 0 | 53,000 | 76,430 |
Variables | First Clustered Group | Second Clustered Group | ||||
---|---|---|---|---|---|---|
Coefficient | S.E. | p-Value | Coefficient | S.E. | p-Value | |
Constant | 7.107 *** | 0.094 | 0.0000 | 7.71 *** | 0.89 | 0.0000 |
ln(AMR) | 0.853 *** | 0.034 | 0.0000 | 0.75 *** | 0.13 | 0.0000 |
ln(TSD) | −0.013 | 0.027 | 0.6400 | 0.1100 | 0.12 | 0.3800 |
ln(TCF) | −0.0068 | 0.0091 | 0.4540 | −0.0072 | 0.0293 | 0.8061 |
ln(TCP) | 0.0131 *** | 0.0049 | 0.0073 | 0.042 ** | 0.018 | 0.0240 |
ln(TLA) | 0.028 ** | 0.013 | 0.0340 | −0.0005 | 0.0521 | 0.9925 |
ln(SPEN) | 0.0018 | 0.0027 | 0.5013 | −0.0085 | 0.0085 | 0.3166 |
ln(TPV) | 0.0036 | 0.0033 | 0.2723 | 0.0089 | 0.0829 | 0.9141 |
0.275 *** | 0.022 | 0.0000 | 1.506 *** | 0.213 | 0.0000 | |
0.7503 *** | 0.0047 | 0.0000 | 1.96 *** | 0.23 | 0.0000 | |
ρ | 0.737 *** | 0.025 | 0.0000 | 0.9900 *** | 0.0059 | 0.0000 |
Interval | First Group (591) | Second Group (65) |
---|---|---|
<0.50 | 143 (24.19%) | 9 (13.85%) |
0.50–0.60 | 81 (13.70%) | 13 (20.00%) |
0.60–0.70 | 133 (22.50%) | 11 (16.92%) |
0.70–0.80 | 215 (36.37%) | 29 (44.62%) |
0.80–0.90 | 18 (3.05%) | 2 (3.08%) |
0.90–1.00 | 1 (0.17%) | 1 (1.53%) |
Mean TE | 0.579 | 0.630 |
Maximum TE | 0.996 | 0.956 |
Minimum TE | 0.133 | 0.333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaovanapoonphol, Y.; Singvejsakul, J.; Sriboonchitta, S. Technical Efficiency of Rice Production in the Upper North of Thailand: Clustering Copula-Based Stochastic Frontier Analysis. Agriculture 2022, 12, 1585. https://doi.org/10.3390/agriculture12101585
Chaovanapoonphol Y, Singvejsakul J, Sriboonchitta S. Technical Efficiency of Rice Production in the Upper North of Thailand: Clustering Copula-Based Stochastic Frontier Analysis. Agriculture. 2022; 12(10):1585. https://doi.org/10.3390/agriculture12101585
Chicago/Turabian StyleChaovanapoonphol, Yaovarate, Jittima Singvejsakul, and Songsak Sriboonchitta. 2022. "Technical Efficiency of Rice Production in the Upper North of Thailand: Clustering Copula-Based Stochastic Frontier Analysis" Agriculture 12, no. 10: 1585. https://doi.org/10.3390/agriculture12101585
APA StyleChaovanapoonphol, Y., Singvejsakul, J., & Sriboonchitta, S. (2022). Technical Efficiency of Rice Production in the Upper North of Thailand: Clustering Copula-Based Stochastic Frontier Analysis. Agriculture, 12(10), 1585. https://doi.org/10.3390/agriculture12101585