The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Materials
3.2. Fluorescence Spectroscopy
3.3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 2022, 386, 132737. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Condurache, N.N.; Aprodu, I.; Andronoiu, D.G.; Enachi, E.; Stănciuc, N.; Bahrim, G.E.; Croitoru, C.; Râpeanu, G. Value-added salad dressing enriched with red onion skin anthocyanins entrapped in different biopolymers. Food Chem. X 2022, 15, 100374. [Google Scholar] [CrossRef]
- Fossen, T.; Andersen, Ø.M. Anthocyanins from red onion, Allium cepa, with novel aglycone. Phytochemistry 2003, 62, 1217–1220. [Google Scholar] [CrossRef]
- Collings, D.A. Anthocyanin in the Vacuole of Red Onion Epidermal Cells Quenches Other Fluorescent Molecules. Plants 2019, 8, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dairi, S.; Dahmoune, F.; Belbahi, A.; Remini, H.; Kadri, N.; Aoun, O.; Bouaoudia, N.; Madani, K. Optimization of microwave extraction method of phenolic compounds from red onion using response surface methodology and inhibition of lipoprotein low-density oxidation. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100301. [Google Scholar] [CrossRef]
- Corea, G.; Fattorusso, E.; Lanzotti, V.; Capasso, R.; Izzo, A.A. Antispasmodic saponins from bulbs of red onion, Allium cepa L. var. Tropea. J. Agric. Food Chem. 2005, 53, 935–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Gregorio, R.M.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Almeida, D.P. Effect of post-harvest practices on flavonoid content of red and white onion cultivars. Food Control 2010, 21, 878–884. [Google Scholar] [CrossRef]
- Rodrigues, A.S.; Pérez-Gregorio, M.R.; García-Falcón, M.S.; Simal-Gándara, J.; Almeida, D.P.F. Effect of meteorological conditions on antioxidant flavonoids in Portuguese cultivars of white and red onions. Food Chem. 2011, 124, 303–308. [Google Scholar] [CrossRef]
- Brahimi, A.; El Ouardi, M.; Kaouachi, A.; Boudboud, A.; Hajji, L.; Hajjaj, H.; Mazouz, H. Characterization of the Biochemical Potential of Moroccan Onions (Allium cepa L.). Int. J. Food Sci. 2022, 2022, 2103151. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. IJSR 2020, 9, 381–386. [Google Scholar]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E.; Slavova, V.; Sabanci, K.; Aslan, M.F.; Cai, X.; Genova, S. Discrimination of onion subjected to drought and normal watering mode based on fluorescence spectroscopic data. Comput. Electron. Agric. 2022, 196, 106916. [Google Scholar] [CrossRef]
- Slavova, V.; Ropelewska, E.; Sabanci, K.; Aslan, M.F.; Nacheva, E. A comparative evaluation of Bayes, functions, trees, meta, rules and lazy machine learning algorithms for the discrimination of different breeding lines and varieties of potato based on spectroscopic data. Eur. Food Res. Technol. 2022, 248, 1765–1775. [Google Scholar] [CrossRef]
- Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Karimzadeh, R.; Ilbeygi, E.; Arribas, J.I. Automatic non-destructive video estimation of maturation levels in Fuji apple (Malus Malus pumila) fruit in orchard based on colour (Vis) and spectral (NIR) data. Biosyst. Eng. 2020, 195, 136–151. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, B.; Li, H.; Shen, M.; Tian, S.; Zhang, H.; Ren, X.; Xing, L.; Zhao, J. Determination of bagged ‘Fuji’ apple maturity by visible and near-infrared spectroscopy combined with a machine learning algorithm. Infrared Phys. Technol. 2020, 111, 103529. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [Google Scholar] [CrossRef]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2021, 20, 52–57. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, e13694. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Elsevier: San Francisco, CA, USA, 2005; 558p. [Google Scholar]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, Fourth Edition 2016. Available online: https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf (accessed on 3 July 2022).
- Cordon, G.; Andrade, C.; Barbara, L.; Romero, A.M. Early detection of tomato bacterial canker by reflectance indices. Inf. Process. Agric. 2022, 9, 184–194. [Google Scholar] [CrossRef]
- Li, X.; Tsuta, M.; Hayakawa, F.; Nakano, Y.; Kazami, Y.; Ikehata, A. Estimating the sensory qualities of tomatoes using visible and near-infrared spectroscopy and interpretation based on gas chromatography–mass spectrometry metabolomics. Food Chem. 2021, 343, 128470. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Lee, D.U.; Choi, J.H.; Kim, S.; Lim, J.H. Prediction of carotenoid content in tomato fruit using a fluorescence screening method. Postharvest Biol. Technol. 2019, 156, 110917. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest Biol. Technol. 2012, 71, 21–31. [Google Scholar] [CrossRef]
- Hu, Q.; Sellers, C.; Kwon, J.S.I.; Wu, H.J. Integration of surface-enhanced Raman spectroscopy (SERS) and machine learning tools for coffee beverage classification. Digit. Chem. Eng. 2022, 3, 100020. [Google Scholar] [CrossRef]
- Smeesters, L.; Magnus, I.; Virte, M.; Thienpont, H.; Meulebroeck, W. Potato quality assessment by monitoring the acrylamide precursors using reflection spectroscopy and machine learning. J. Food Eng. 2021, 311, 110699. [Google Scholar] [CrossRef]
- Bertani, F.R.; Businaro, L.; Gambacorta, L.; Mencattini, A.; Brenda, D.; Di Giuseppe, D.; De Ninno, A.; Solfrizzo, M.; Martinelli, E.; Gerardino, A. Optical detection of aflatoxins B in grained almonds using fluorescence spectroscopy and machine learning algorithms. Food Control 2020, 112, 107073. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, S.; Qiu, J.; Li, M.; Li, D.; Xu, D.; Li, D.; Liu, Q. Raman spectroscopy combined with machine learning for rapid detection of food-borne pathogens at the single-cell level. Talanta 2021, 226, 122195. [Google Scholar] [CrossRef] [PubMed]
- Berghian-Grosan, C.; Magdas, D.A. Raman spectroscopy and machine-learning for edible oils evaluation. Talanta 2020, 218, 121176. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, Z.; Tian, R.; Niu, Y.; Gao, S.; Liu, H. Total synchronous fluorescence spectroscopy coupled with deep learning to rapidly identify the authenticity of sesame oil. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118841. [Google Scholar] [CrossRef] [PubMed]
- Ropelewska, E.; Sabanci, K.; Aslan, M.F. Discriminative Power of Geometric Parameters of Different Cultivars of Sour Cherry Pits Determined Using Machine Learning. Agriculture 2021, 11, 1212. [Google Scholar] [CrossRef]
- Ropelewska, E. The Application of Machine Learning for Cultivar Discrimination of Sweet Cherry Endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Mamat, N.; Othman, M.F.; Abdoulghafor, R.; Belhaouari, S.B.; Mamat, N.; Mohd Hussein, S.F. Advanced Technology in Agriculture Industry by Implementing Image Annotation Technique and Deep Learning Approach: A Review. Agriculture 2022, 12, 1033. [Google Scholar] [CrossRef]
Classifier | Predicted Class (%) | Actual Class | Average Accuracy (%) | |
---|---|---|---|---|
‘Asenovgradska kaba’ | Red Breeding Line | |||
J48 (Trees) | 100 | 0 | ‘Asenovgradska kaba’ | 95 |
0 | 90 | red breeding line | ||
LMT (Trees) | 100 | 0 | ‘Asenovgradska kaba’ | 100 |
0 | 100 | red breeding line | ||
Multilayer Perceptron (Functions) | 100 | 0 | ‘Asenovgradska kaba’ | 100 |
0 | 100 | red breeding line | ||
QDA (Functions) | 90 | 0 | ‘Asenovgradska kaba’ | 90 |
0 | 90 | red breeding line | ||
Naive Bayes (Bayes) | 100 | 0 | ‘Asenovgradska kaba’ | 100 |
0 | 100 | red breeding line | ||
Logit Boost (Meta) | 100 | 0 | ‘Asenovgradska kaba’ | 100 |
0 | 100 | red breeding line | ||
JRip (Rules) | 100 | 0 | ‘Asenovgradska kaba’ | 95 |
0 | 90 | red breeding line | ||
LWL (Lazy) | 100 | 0 | ‘Asenovgradska kaba’ | 100 |
0 | 100 | red breeding line |
Classifier | Predicted Class | TPR | FPR | Precision | F-Measure | Kappa Statistic |
---|---|---|---|---|---|---|
J48 (Trees) | ‘Asenovgradska kaba’ | 1.000 | 0.100 | 0.909 | 0.952 | 0.9 |
red breeding line | 0.900 | 0.000 | 1.000 | 0.947 | ||
LMT (Trees) | ‘Asenovgradska kaba’ | 1.000 | 0.000 | 1.000 | 1.000 | 1.0 |
red breeding line | 1.000 | 0.000 | 1.000 | 1.000 | ||
Multilayer Perceptron (Functions) | ‘Asenovgradska kaba’ | 1.000 | 0.000 | 1.000 | 1.000 | 1.0 |
red breeding line | 1.000 | 0.000 | 1.000 | 1.000 | ||
QDA (Functions) | ‘Asenovgradska kaba’ | 0.900 | 0.100 | 0.900 | 0.900 | 0.8 |
red breeding line | 0.900 | 0.100 | 0.900 | 0.900 | ||
Naive Bayes (Bayes) | ‘Asenovgradska kaba’ | 1.000 | 0.000 | 1.000 | 1.000 | 1.0 |
red breeding line | 1.000 | 0.000 | 1.000 | 1.000 | ||
Logit Boost (Meta) | ‘Asenovgradska kaba’ | 1.000 | 0.000 | 1.000 | 1.000 | 1.0 |
red breeding line | 1.000 | 0.000 | 1.000 | 1.000 | ||
JRip (Rules) | ‘Asenovgradska kaba’ | 1.000 | 0.100 | 0.909 | 0.952 | 0.9 |
red breeding line | 0.900 | 0.000 | 1.000 | 0.947 | ||
LWL (Lazy) | ‘Asenovgradska kaba’ | 1.000 | 0.000 | 1.000 | 1.000 | 1.0 |
red breeding line | 1.000 | 0.000 | 1.000 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabanci, K.; Aslan, M.F.; Slavova, V.; Genova, S. The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line. Agriculture 2022, 12, 1652. https://doi.org/10.3390/agriculture12101652
Sabanci K, Aslan MF, Slavova V, Genova S. The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line. Agriculture. 2022; 12(10):1652. https://doi.org/10.3390/agriculture12101652
Chicago/Turabian StyleSabanci, Kadir, Muhammet Fatih Aslan, Vanya Slavova, and Stefka Genova. 2022. "The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line" Agriculture 12, no. 10: 1652. https://doi.org/10.3390/agriculture12101652
APA StyleSabanci, K., Aslan, M. F., Slavova, V., & Genova, S. (2022). The Use of Fluorescence Spectroscopic Data and Machine-Learning Algorithms to Discriminate Red Onion Cultivar and Breeding Line. Agriculture, 12(10), 1652. https://doi.org/10.3390/agriculture12101652