Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Pre-Processing
2.3.2. Processing
2.3.3. Supervised Classification Techniques
Machine Learning Algorithms
Random Forest Classification
Minimum Distance Classification
K-Dimensional Tress-k-Nearest Neighbor
2.3.4. Validation
3. Results
3.1. Statistical Evaluation
3.2. Land Use Map
3.3. Relative Importance of the Covariates in RF and Class Distribution
4. Discussion
4.1. Comparison between Machine Learning Classification Methods
4.2. Spectral Index Importance for Land Use Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zucca, C.; Canu, A.; Previtali, F. Soil degradation by land use change in an agropastoral area in Sardinia (Italy). Catena 2010, 83, 46–54. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Pelletier, C.; Gorrab, A.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Aissa, N.; Mougenot, B. Soil Texture Esti-mation Using Radar and Optical Data from Sentinel-1 and Sentinel-2. Remote Sens. 2019, 11, 1520. [Google Scholar] [CrossRef]
- Tontisirin, N.; Anantsuksomsri, S. Economic Development Policies and Land Use Changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor. Sustainability 2021, 13, 6153. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, N.; Yao, L. Land Use and Cover Change during the Rapid Economic Growth Period from 1990 to 2010: A Case Study of Shanghai. Sustainability 2018, 10, 426. [Google Scholar] [CrossRef]
- Verburga, P.H.; Crossmanb, N.; Ellisc, E.C.; Heinimannd, A.; Hosterte, P.; Mertzf, O.; Nagendrag, H.; Sikorh, T.; Erbi, K.-H.; Golubiewskij, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef]
- Boulaassal, H.; Annaki, S.; Yazidi, A.O.; Maatouk, M.; Wahbi, M.; El Kharki, O. Mapping of land cover changes between 2002 and 2016 from Landsat images: Case of the Tanger Tetouan Al-Hoceima region (Morocco). Afr. J. Land Policy Geospat. Sci. 2020, 3, 14–31. [Google Scholar]
- Soro, G.; Ahoussi, E.K.; Kouadio, E.K.; Dsoro, T.; Oulare, S.; Saley, M.B.; Soro, N.; Biemi, J. Apport de la télédétection à la cartographie de l’évolution spatio-temporelle de la dynamique de l’occupation du sol dans la région des Lacs (Centre de la Côte d’Ivoire). Afr. Sci. 2014, 10, 146–160. [Google Scholar]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2019, 57, 1–20. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T.; et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Inglada, J. Cartographie de l’occupation des sols à partir d’images optiques. In Observation des Surfaces Continentales par té-Lédétection 1 Agriculture et Forê; Baghdadi, N., Zribi, M., ISTE, Eds.; British Library: London, UK, 2017; Volume 3, pp. 93–122. [Google Scholar]
- Cecchi, P.; Gourdin, F.; Koné, S.; Corbin, D.; Etienne, J.; Casenav, A. Les petits barrages du nord de la Cote d’Ivoire: Inventaire et potentialite’s hydrologiques. Sécheresse 2009, 20, 112–122. [Google Scholar] [CrossRef]
- Rogan, J.; Chen, D. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Treitz, P.; Rogan, G. Remote sensing for mapping and monitoring land-cover and land-use change—An introduction. Prog. Plan. 2004, 61, 269–279. [Google Scholar] [CrossRef]
- Khan, A.; Govil, H.; Kumar, G.; Dave, R. Synergistic use of Sentinel-1 and Sentinel-2 for improved LULC mapping with special reference to bad land class: A case study for Yamuna River floodplain, India. Spat. Inf. Res. 2020, 28, 669–681. [Google Scholar] [CrossRef]
- Saadat, H.; Adamowski, J.; Bonnell, R.; Sharifi, F.; Namdar, M.; Ale-Ebrahim, S. Land use and land cover classification over a large area in Iran based on single date analysis of satellite imagery. ISPRS J. Photogramm. Remote Sens. 2011, 66, 608–619. [Google Scholar] [CrossRef]
- Makinde, E.O.; Oyelade, E.O. Land cover mapping using Sentinel-1 SAR and Landsat 8 imageries of Lagos State for 2017. Environ. Sci. Pollut. Res. 2019, 27, 66–74. [Google Scholar] [CrossRef]
- Samra, R.M.A. Dynamics of human-induced lakes and their impact on land surface temperature in Toshka Depression, Western Desert, Egypt. Environ. Sci. Pollut. Res. 2021, 29, 20892–20905. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GIScience Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Yang, R.-M.; Guo, W.-W. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Environ. Monit. Assess. 2019, 191, 462. [Google Scholar] [CrossRef]
- Floury, N.; Attema, E.; Davidson, M.; Levrini, G.; Rommen, B.; Rosich, B.; Snoeij, P. Proceedings of the ESA Sentinel-1 Mission and Products 37th COSPAR Scientific Assembly Symposium A, session 31 (oral), Montréal, QU, Canada, 13–20 July 2008; p. 900.
- Tavus, B.; Kocaman, S.; Nefeslioglu, H.A.; Gokceoglu, C. A Fusion approach for flood mapping using sentinel-1 and sentinel-2 datasets. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2, 641–648. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Ji, C.; Xu, X.; Wang, H.; Pan, J.; Bumberger, J.; Haase, D.; Lausch, A. Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images. In Science of the Total Environment; Elsevier: Amsterdam, The Netherlands, 2020; Volume 755, pp. 1–55. [Google Scholar] [CrossRef]
- Miranda, E.; Mutiara, A.B.; Wibowo, W.C. Classification of Land Cover from Sentinel-2 Imagery Using Supervised Classification Technique (Preliminary Study). In Proceedings of the 2018 International Conference on Information Management and Technology (ICIMTech), Jakarta, Indonesia, 3–5 September 2018; pp. 69–74. [Google Scholar]
- Keuchel, J.; Naumann, S.; Heiler, M.; Siegmund, A. Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sens. Environ. 2003, 86, 530–541. [Google Scholar] [CrossRef]
- Weslati, O.; Bouaziz, S.; Serbaji, M.M. Mapping and monitoring land use and land cover changes in Mellegue watershedusing remotely sensed data. Remote Sens. Environ. 2020, 13, 687. [Google Scholar] [CrossRef]
- Minu Nair, S.; Bindhu, J.S. Supervised Techniques and Approaches for Satellite Image Classification. Int. J. Comput. Appl. 2016, 134, 1–6. [Google Scholar]
- Wang, X.; Zhang, Y.; Atkinson, P.M.; Yao, H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2020, 92, 102182. [Google Scholar] [CrossRef]
- Osisanwo, F.Y.; Akinsola, J.E.T.; Awodele, O.; Hinmikaiye, J.O.; Olakanmi, O.; Akinjobi, J. Supervised Machine Learning Algorithms: Classification and Comparison. Int. J. ComPuter Trends Technol. 2017, 48, 128–138. [Google Scholar]
- Sahebjalal, E.; Dashtekian, K. Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. Afr. J. Agric. Res. 2013, 8, 4614–4622. [Google Scholar] [CrossRef]
- Bouaziz, M.; Eisold, S.; Guermazi, E. Semiautomatic approach for land cover classification: A remote sensing study for arid climate in southeastern Tunisia. Euro-Mediterr. J. Environ. Integr. 2017, 2, 24. [Google Scholar] [CrossRef]
- Farda, N.M. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine. In Proceedings of the 5th Geoinformation Science Symposium, Yogyakarta, Indonesia, 27–28 September 2017; Volume 98, p. 12042. [Google Scholar] [CrossRef]
- Kotisiantis, S.B. Supervised Machine Learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for SatelliteObservations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Lowe, B. Random Forest Algorithm for Land Cover Classification. Int. J. Recent Innovtion Trends Comput. Commun. 2016, 4, 58–63. [Google Scholar]
- Shareef, M.A.; Hassan, N.D.; Hasan, S.F.; Khenchaf, A. Integration of Sentinel-1A and Sentinel-2B Data for Land Use and Land Cover Mapping of the Kirkuk Governorate, Iraq. Int. J. Geoinf. 2020, 16, 87–96. [Google Scholar]
- Ameur, M.; Hamzaoui-Azaza, F.; Gueddari, M. Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques. Environ. Geochem. Health 2016, 38, 1147–1167. [Google Scholar] [CrossRef]
- Mejri, S.; Chekirbene, A.; Tsujimura, M.; Boughdiri, M.; Mlayah, A. Tracing groundwater salinization processes in an inland aquifer: A hydrogeochemical and isotopic approach in Sminja aquifer (Zaghouan, northeast of Tunisia). J. Afr. Earth Sci. 2018, 147, 511–522. [Google Scholar] [CrossRef]
- Florence. Land evaluation in the oued Rmel catchment—Tunisia—24th course professional master “Geomatics and natural resources evaluation. Firenze, Italy. 2004, pp. 1–149. Available online: http://www.iao.florence.it (accessed on 29 October 2021).
- Ben Hassine, H.; Karbout, N.; Kridane, K.; Sanaa, M.; Jedidi, N. Caractérisation des fractions colloïdales minérales et organiques des horizons superficiels des sols d’une toposéquence en zone semi-aride de la Tunisie. Etude Gestion Sols. 2012, 19, 105–118. [Google Scholar]
- Hammami, M.; Bouraoui, R.; Selmi, H. Characterization and typology of dairy cattle farms in the Tunisian semi-arid (Zaghouan region). J. New Sci. 2017, 42, 2290–2298. [Google Scholar]
- Regional Agricultural Development Committee of Zaghouan (RADCZ). Le gouvernorat de Zaghouan en chiffres. Tunsie. 2021. Available online: http://www.cgdr.nat.tn/upload/files/gouvchiffres/grch2014/zg.pd (accessed on 29 October 2021).
- Catry, T.; Pottier, A.; Marti, R.; Li, Z.; Roux, M.; Herbreteau, V.; Mangeas, M.; Demagistri, L.; Dessay, N. Apports de la combi-naison d’images satellites optique et RADAR dans l’étude des maladies à transmission vectorielle: Cas du paludisme à la frontière Guyane française—Brésil. Confins 2018, 37, 14–32. [Google Scholar] [CrossRef]
- Copernicus. Available online: https://scihub.copernicus.eu/ (accessed on 31 August 2021).
- Gadal, S.; Gbetkom, P.; Mfondoum, A.H. A new soil degradation method analysis by Sentinel 2 images combining spectral indices and statistics analysis: Application to the Cameroonians shores of Lake Chad and its hinterland. In Proceedings of the 7th International Conference on Geographical Information Systems Theory, Applications and Management (GISTAM 2021), Online, 23–25 April 2021; pp. 25–36. [Google Scholar]
- Martı´n-Sotoca, J.J.; Saa-Requejo, A.; Borondo, J.; Tarquis, A.M. Singularity maps applied to a vegetation index. Biosyst. Eng. 2017, 168, 42–53. [Google Scholar] [CrossRef]
- Houssa, R.; Pion, J.-C.; Yésou, H. Effects of granulometric and mineralogical composition on spectral reflectance of soils in a Sahelian area. ISPRS J. Photogramm. Remote Sens. 1996, 51, 284–298. [Google Scholar] [CrossRef]
- Escadafal, R.; Huet, A. Etudes des propriétés spectrales des sols arides appliquée à l’amélioration des indices de végétation obtenus par télédétection. Série II. Pédologie. A. C. R. Acad. Sci. Pans. 1991, 312, 1385–1391. [Google Scholar]
- Rahar, P.S.; Pal, M. Comparison of Various Indices to Differentiate Built-up and Bare Soil with Sentinel 2 Data. In Applications of Geomatics in Civil Engineering; Springer: Singapore, Singapore, 2019; Volume 33, pp. 501–509. [Google Scholar] [CrossRef]
- Bouzekri, S.; Abdel Aziz, L.; Lachehab, A. A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. J. Indian Soc. Remote Sens. 2015, 43, 867–873. [Google Scholar] [CrossRef]
- Nguyen, C.; Chidthaisong, A.; Diem, P.K.; Huo, L.-Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Antil, K.; Pal, M. Comparison of landsat 8 and sentinel 2 data for accurate mapping of built-up area and bare soil. In Proceedings of the 38th Asian Conference on Remote Sensing, New Delhi, India, 23–27 October 2017. [Google Scholar]
- Masemola, C.; Cho, M.A.; Ramoelo, A. Sentinel-2 time series based optimal features and time window for mapping invasive Australian native Acacia species in KwaZulu Natal, South Africa. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2020, 93, 102207. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algo-rithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Isioye, O.A.; Akomolafe, E.A.; Ikwueze, U.H. Accuracy analysis of sentinel 2A and landsat 8 Oli+ Satellite datasets over KANO state (Nigeria) using vegetation spectral indices. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIV-3/W1-2020, 65–72. [Google Scholar] [CrossRef]
- Sentinel-Hub. Available online: https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/barren_soil/ (accessed on 1 March 2022).
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Sahu, H.; Haldar, D.; Danodia, A.; Kumar, S. Classification of orchard crop using sentinel-1A synthetic aperture radar data. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 335–338. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A. Classification and Regression Trees, 1st ed.; Chapman & Hall: Boca Raton, NY, USA, 1984; pp. 1–368. [Google Scholar]
- Na, X.; Zhang, S.; Xiaofeng, L.; Yu, H.; Liu, C. Improved Land Cover Mapping using Random Forests Combined with Land-sat Thematic Mapper Imagery and Ancillary Geographic Data. Photogramm. Eng. Remote Sens. 2010, 76, 833–840. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kumar, B.S. K-Dimensional Tree using coresets for KNN based Classification. Int. J. Res. Eng. Sci. 2022, 10, 259–261. [Google Scholar]
- Banko, G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory; International Institute for Applied Systems Analysis _ A-2361: Laxenburg, Austria, 1998. [Google Scholar]
- Nguyen, H.T.T.; Doan, T.M.; Tomppo, E.; McRoberts, R.E. Land Use/Land Cover Mapping Using Multitemporal Sentinel-2 Imagery and Four Classification Methods—A Case Study from Dak Nong, Vietnam. Remote Sens. 2020, 12, 1367. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: Techniques and Challenges. Environ. Sci. Pollut. Res. 2020, 27, 29900–29926. [Google Scholar] [CrossRef] [PubMed]
- Nery, T.; Sadler, R.; Aulestia, M.S.; White, B.; Polyakov, M. Discriminating native and plantation forests in a Landsat time-series for land use policy design. Int. J. Remote Sens. 2018, 40, 4059–4082. [Google Scholar] [CrossRef]
- Wasniewski, A.; Hosciło, A.; Zagajewski, B.; Tarazewicz, M.D. Assessment of Sentinel-2 Satellite Images andRandom Forest Classifier for Rainforest Mapping in Gabon. Forests 2020, 11, 941. [Google Scholar] [CrossRef]
- Alonso, L.; Picos, J.; Armesto, J. Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models. Remote Sens. 2021, 13, 2237. [Google Scholar] [CrossRef]
- Qiu, B.; Wang, Z.; Tang, Z.; Chen, C.; Fan, Z.; Li, W. Automated cropping intensity extraction from isolines of wavelet spectra. Comput. Electron. Agric. 2016, 125, 1–11. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, K.; Tang, Z.; Chen, C.; Wang, Z. Developing soil indices based on brightness, darkness, and greenness to improve land surface mapping accuracy. GISci. Remote Sens. 2017, 54, 759–777. [Google Scholar] [CrossRef]
- Nguyen, A.N. Historic drought and salinity intrusion in the Mekong Delta in 2016: Lessons learned and response solutions. Vietnam. J. Sci. Technol. Eng. 2017, 59, 93–96. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Alexakis, D.D. Exploring the Impact of Various Spectral Indices on Land Cover Change De-tection Using Change Vector Analysis: A Case Study of Crete Island, Greece. Remote Sens. J. 2020, 12, 319. [Google Scholar] [CrossRef]
- Saini, R.; Ghosh, S.K. Crop classification in a heterogeneous agricultural environment using ensemble classifiers and single-date Sentinel-2A imagery. Geocarto Int. 2018, 36, 2141–2159. [Google Scholar] [CrossRef]
- Rasul, A.; Balzter, H.; Ibrahim, G.R.F.; Hameed, H.M.; Wheeler, J.; Adamu, B.; Ibrahim, S.; Najmaddin, P.M. Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land 2018, 7, 81. [Google Scholar] [CrossRef] [Green Version]
Data Collection | Characteristics |
---|---|
Sample number | 220 points |
Date | August 2021 |
Sampling type | systematic with a step of 1 Km |
Total area | 34,000 ha |
Sol class number | 6 classes |
Water | 4 points |
Urban area | 42 points |
Fields crop | 67 points |
Arboriculture | 65 points |
Forest | 34 points |
Bare soil | 8 points |
Index | Characteristics | Equations | Reference |
---|---|---|---|
NDVI | Normalized Difference Vegetation Index: is used to monitor the condition of vegetation cover as well as to evaluate the photosynthetic activity of vegetation. Water, bare soil and vegetation are indicated by NDVI values of −1, 1 and 0, respectively. | (B4 − B8)/(B4 + B8) | [45,46] |
CI | Coloration Index: Applying this index, researchers can learn more about the soil’s organic matter content and mineral composition. | (B4 − B3)/(B4 + B3) | [45,47] |
RI | Red Index: Used as one of the indices to assess soil mineralogy, including iron concentration. | B4²/B3² | [48] |
BSI | Bare Soil Index: Provides an idea of the state of crops, and allows the detection of recent deforestation or monitoring of droughts. Used to improve the accuracy of bare soil prediction using medium-resolution satellite data. | [(B11 + B4) − (B8 + B2)]/[(B11 + B4) + (B8 + B2] | [49,50,51,52] |
GCI | Green Chlorophyll Index: This index is used to calculate the amount of leaf chlorophyll in a wide variety of plant species. It decreases in stressed plants, making it a useful indicator of plant health. | [B8/B3] − 1 | [53,54,55] |
SAVI | The Soil-Adjusted Vegetation Index: The ground-adjusted vegetation index was designed to minimize the influences of soil brightness. Its creator, Huete, added a soil adjustment factor L to the NDVI equation to correct for the effects of soil noise (soil color, soil moisture, soil variability across regions, etc.), which tend to have an impact on the results: Important fact: L is a soil brightness correction factor ranging from 0 to 1. | (B8 − B4)/(B8 + B4 + L) x(1 + L) Avec L = 0.428 | [56] |
NDBI | The normalized difference built-up index: To enhance the built-up area’s ability to predict future incidents using medium resolution satellite datasets | (B8 − B4)/(B8 + B4) | [49,50,51,52] |
Sentinel2 31 August 2021 | Accuracy Value (%) | RMSE | Kappa Value (%) | Precision (%) | Recall (%) |
---|---|---|---|---|---|
RF | 99.54 | 0.23 | 0.98 | 0.986 | 0.986 |
MDC | 94.29 | 1.15 | 0.79 | 0.828 | 0.83 |
KDTree-KNN | 99.07 | 0.49 | 0.96 | 0.972 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abida, K.; Barbouchi, M.; Boudabbous, K.; Toukabri, W.; Saad, K.; Bousnina, H.; Sahli Chahed, T. Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas. Agriculture 2022, 12, 1429. https://doi.org/10.3390/agriculture12091429
Abida K, Barbouchi M, Boudabbous K, Toukabri W, Saad K, Bousnina H, Sahli Chahed T. Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas. Agriculture. 2022; 12(9):1429. https://doi.org/10.3390/agriculture12091429
Chicago/Turabian StyleAbida, Khouloud, Meriem Barbouchi, Khaoula Boudabbous, Wael Toukabri, Karem Saad, Habib Bousnina, and Thouraya Sahli Chahed. 2022. "Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas" Agriculture 12, no. 9: 1429. https://doi.org/10.3390/agriculture12091429
APA StyleAbida, K., Barbouchi, M., Boudabbous, K., Toukabri, W., Saad, K., Bousnina, H., & Sahli Chahed, T. (2022). Sentinel-2 Data for Land Use Mapping: Comparing Different Supervised Classifications in Semi-Arid Areas. Agriculture, 12(9), 1429. https://doi.org/10.3390/agriculture12091429