Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Water Activity (aw)
2.2.2. The Water Holding Capacity (WHC)
2.2.3. The Water Solubility Index (WSI)
2.2.4. Total Polyphenolic Compounds
2.2.5. Antioxidant Properties
2.2.6. Weigh Loss
2.2.7. Volume and Specific Mass Measurements
- -
- SM is specific mass ()
- -
- m is sample weight (g)
- -
- v is sample volume (cm3)
2.2.8. Instrumental Texture Measurement
2.2.9. Sensory Evaluation
2.2.10. Kaiser Rolls Basic Chemical Composition
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Functional Properties of the Studied Fiber Preparations
3.2. Use of the Fruit Fiber Preparations in Wheat Bakery Production on the Example on Kaiser Rolls
Evaluation of Designed Kaiser Rolls
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kapczuk, P.; Komorniak, N.; Rogulska, K.; Bosiacki, M.; Chlubek, D. Żywność wysokoprzetworzona i jej wpływ na zdrowie dzieci i osób dorosłych. Postępy Biochem. 2020, 66, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Li Olive, Y.; Komarek, A.R. Dietaryfiber basics: Health, nutrition, analysis and applications. Food Qual. Saf. 2017, 1, 47–59. [Google Scholar] [CrossRef]
- Witczak, T.; Stępień, A.; Gumul, D.; Witczak, M.; Fiutak, G.; Zięba, T. The influence of the extrusion process on the nutritional composition, physical properties and storage stability of black chokeberry pomaces. Food Chem. 2021, 334, 127548. [Google Scholar] [CrossRef] [PubMed]
- Tarko, T.; Duda-Chodak, A.; Bebak, A. Aktywność biologiczna wybranych wytłoków owocowych oraz warzywnych. Żywn. Nauk. Tech. Jak. 2012, 4, 55–65. [Google Scholar]
- Schmid, V.; Steck, J.; Mayer–Miebach, E.; Behsnilian, D.; Briviba, K.; Bunzel, M.; Karbstein, H.P.; Azad Emin, M. Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Res. Int. 2020, 134, 109232. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rutkowska, J.; Hallmann, E. Aronia czarnoowocowa (Aronia Melanocarpa) jako potencjalny składnik żywności funkcjonalnej. Żywn. Nauk. Tech. Jak. 2012, 6, 21–30. [Google Scholar]
- Wichrowska, D.; Żary-Sikorska, E. Właściwości prozdrowotne jabłkowych wytłoków poprasowych. Inżynieria Apar. Chem. 2015, 54, 286–287. [Google Scholar]
- Znamirowska, A.; Kalicka, D.; Buniowska, M.; Rożek, P. Wpływ dodatku suszu z wytłoków jabłkowych na właściwości fizykochemiczne i sensoryczne jogurtów. Żywn. Nauk. Tech. Jak. 2018, 25, 71–80. [Google Scholar] [CrossRef]
- Miastkowski, K.; Bakoniuk, J.R.; Czaplicka, M.; Obidziński, S. Charakterystyka wiązania wody przez błonnik kakaowy. Postępy Tech. Przetw. Spoż. 2015, 1, 15–19. [Google Scholar]
- Matysek-Nawrocka, M.; Cyrankiewicz, P. Substancje biologicznie aktywne pozyskiwane z herbaty, kawy i kakao oraz ich zastosowanie w kosmetykach. Postępy Fitoterapii. 2016, 17, 139–144. [Google Scholar]
- Martínez-Cervera, S.; Salvador, A.; Muguerza, B.; Moulay, L.; Fiszman, S.M. Cocoa fibre and its application as fat replacer in chocolate muffins. LWT Food Sci. Technol. 2011, 44, 729–736. [Google Scholar] [CrossRef]
- Masiarz, E.; Kowalska, H.; Bednarska, M. Wykorzystanie wytłoków roślinnych jako źródła błonnika pokarmowego i innych bio-składników w kreowaniu właściwości prozdrowotnych, sensorycznych i technologicznych pieczywa. Postępy Tech. Przetw. Spoż. 2019, 1, 103–107. [Google Scholar]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Foschia, M.; Peressini, D.; Sensidoni, A.; Brennan, C.S. Review the effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013, 58, 216–227. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Wang, X.; Zheng, X. Modification and Application of Dietary Fiber in Foods. J. Chem. 2017, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: Asystematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Hussain, S.; Jõudu, I.; Bhat, R. Dietary Fiber from Underutilized Plant Resources—A Positive Approach for Valorization of Fruit and Vegetable Wastes. Sustainability 2020, 12, 5401. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Function. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Jiang, G.; Feng, X.; Wu, Z.; Li, S.; Bai, X.; Zhao, C.; Ameer, K. Development of wheat bread added with insoluble dietary fiber from ginseng residue and effects on physiochemical properties, in vitro adsorption capacities and starch digestibility. LWT Food Sci. Technol. 2021, 149, 111855. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.U.J.S.; Rao, U.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. Food Sci. Technol. 2020, 117, 108652. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Sci. Today 1969, 14, 372–376. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- EN ISO 8586:2012; Sensory Analysis. General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- EN ISO 8589:2010; Sensory Analysis. General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2010.
- Obidziński, S. Charakterystyka aktywności wody i parametrów geometrycznych odpadów melisy w aspekcie ich wykorzystania jako dodatku do pasz. Acta Agrophysica 2013, 20, 113–124. [Google Scholar]
- McConnell, A.; Eastwood, M.; Mitchel, W. Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agric. 1974, 25, 1457–1464. [Google Scholar] [CrossRef]
- Xue, X.; Wang, J.; Li, S.; Zhang, X.; Dong, J.; Gui, L.; Chang, Q. Effect of micronised oat bran by ultrafine grinding on dietary fibre, texture and rheological characteristic of soft cheese. Int. J. Food Sci. Technol. 2020, 55, 578–588. [Google Scholar] [CrossRef]
- Gao, W.; Chen, F.; Wang, X.; Meng, Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2222–2255. [Google Scholar] [CrossRef]
- Dziki, D.; Gawlik-Dziki, U.; Tarasiuk, W.; Różyło, R. Fiber Preparation from Micronized Oat By-Products: Antioxidant Properties and Interactions betweenBioactive Compounds. Molecules 2022, 27, 2621. [Google Scholar] [CrossRef]
- Nelson, A. Properties of high-fiber ingredients. Cereal Foods World 2001, 3, 92–100. [Google Scholar]
- Rzedzicki, Z.; Sykut-Domańska, E.; Strychalski, P. Charakterystyka składu chemicznego wybranych sortymentów pieczywa chrupkiego. Bromat. Chem. Toksykol. 2008, 3, 610–615. [Google Scholar]
- Sadowska, A.; Swiderski, F.; Rakowska, R.; Hallmann, E. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying. Food Sci. Biotechnol. 2019, 28, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Sadowska, A.; Świderski, F.; Hallmann, E.; Świąder, K. Assessment of chokeberry powders quality obtained using an innovative fluidized-bed jet milling and drying method with pre-drying compared with convection drying. Foods 2021, 10, 292. [Google Scholar] [CrossRef]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. Var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Appl. Sci. 2020, 10, 4706. [Google Scholar] [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A review on the characteristic components and potential health effects. Planta Med. 2008, 74, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Rugină, D.; Sconţa, Z.; Leopold, L.; Pintea, A.; Bunea, A.; Socaciu, C. Antioxidant activities of chokeberry extracts and the cytotoxic action of their anthocyanin fraction on hela human cervical tumor cells. J. Med. Food. 2012, 15, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Szajdek, A.; Borowska, J. Właściwości przeciwutleniające żywności pochodzenia roślinnego. Żywn. Nauk. Tech. Jak. 2004, 4, 5–28. [Google Scholar]
- Regulation (EC) No. 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: http://data.europa.eu/eli/reg/2006/1924/oj (accessed on 25 August 2022).
- Wojciechowicz, A.; Gil, Z. Jakość pieczywa pszennego z udziałem błonnika pokarmowego różnego pochodzenia. Żywn. Nauk. Tech. Jak. 2009, 6, 102–111. [Google Scholar]
- Sandulachi, E. Water acrivity concept and its role in food preservation. Meridian Eng. 2012, 4, 40–48. [Google Scholar]
- Mathlouthi, M. Water content, water activity, water structure and the stability of foodstuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Tańska, M.; Rotkiewicz, D. Wykorzystanie wytłoków jabłkowych w produkcji pieczywa. Bromat. Chem. Toksykol. 2011, 3, 847–853. [Google Scholar]
- Yoon, H.S.; Kim, J.W.; Kim, S.H.; Kim, Y.G.; Eom, H.J. Quality Characteristics of Bread added with Aronia Powder (Aronia melanocarpa). J. Korean Soc. Food Sci. Nutr. 2014, 43, 273–280. [Google Scholar] [CrossRef]
- Sujka, K.; Ceglińska, A.; Romankiewicz, D.; Kacprzyk, E. Wpływ dodatku błonnika na zmianę wilgotności i tekstury pieczywa pszennego w czasie przechowywania. Acta Agrophysica 2018, 25, 73–84. [Google Scholar] [CrossRef]
- Amir, I.Z.; Hanida, H.S.; Syafiq, A. Development and physical analysis of high fiber bread incorporated with cocoa (Theobroma cacao sp.) pod husk powder. Int. Food Res. J. 2013, 20, 1301–1305. [Google Scholar]
- Baca, E.; Kapka, A.; Karaś, M.; Zielińska, D. Wpływ dodatku błonnika jabłkowego do mąki pszennej na właściwości funkcjonalne ciasta i jakość chleba. Prob. Hig. Epidem. 2011, 92, 868–871. [Google Scholar]
- Petković, M.; Filipović, V.; Filipović, J.; Durović, I.; Miletić, N.; Radovanović, J. Chemical, antioxidative and sensory characteristics of wheat bread partially substituted with black chokeberry (Aronia melanocarpa L.) powder. J. Food Process. Preserv. 2020, 45, 1. [Google Scholar] [CrossRef]
Type of Fiber Preparation | Energy Value | Fat (Including Saturated Fatty Acids) | Carbohydrates (Including Sugars) | Fiber | Protein | Salt |
---|---|---|---|---|---|---|
Chokeberry | 251 | 4.25 (0.0) | 16.9 (7.0) | 57.8 | 7.2 | <0.01 |
Apple | 293 | 3.7 (0.7) | 29 (<1) | 60.0 | 7.0 | <0.1 |
Cocoa | 269 | 6.0 (1.7) | 0.7 (<0.2) | 72.0 | 17.0 | <0.1 |
Formulation Ingredient | Basic Recipe | 3% Addition of a Fiber Preparation | 6% Addition of Fiber Preparation |
---|---|---|---|
Wheat flour type 450 | 60 | 57 | 54 |
Water | 25 | 25 | 25 |
Instant yeast | 1 | 1 | 1 |
Sugar | 1 | 1 | 1 |
Salt | 1 | 1 | 1 |
Eggs | 8 | 8 | 8 |
Butter, 82% fat content | 5 | 5 | 5 |
Fiber preparation | - | 3 | 6 |
Type of Fiber | Water Activity | WHC (g H2O/1 g) | WSI (%) |
---|---|---|---|
Chokeberry | 0.29 ± 0.002 b | 2.55 ± 0.04 a | 30.1 ± 0.20 c |
Apple | 0.30 ± 0.001 b | 2.02 ± 0.08 a | 27.4 ± 0.42 b |
Cocoa | 0.30 ± 0.001 a | 3.29 ± 0.01 b | 16.7 ± 0.21 a |
Type of Fiber | Total Polyphenols | Antioxidant Activity |
---|---|---|
Chokeberry | 7.0 ± 0.03 a | 10.11 ± 0.02 a |
Apple | 1.6 ± 0.01 c | 3.63 ± 0.02 c |
Cocoa | 6.3 ± 0.04 b | 7.62 ± 0.01 b |
Type of Rolls | Water Activity | Weight Loss (%) | Specific Mass (g/cm3) | Hardness (N) | |
---|---|---|---|---|---|
Control | 0.96 ± 0.003 | 14.25 ± 0.2 d | 0.30 ± 0.03 a | 17.38 ± 1.82 a | |
Apple fiber | 3% | 0.95 ± 0.001 | 15.06 ± 0.7 e | 0.37 ± 0.02 b | 53.36 ± 8.41 c |
6% | 0.97 ± 0.002 | 13.46 ± 0.5 c | 0.52 ± 0.04 c | 65.70 ± 3.64 d | |
Cocoa fiber | 3% | 0.96 ± 0.002 | 11.70 ± 0.5 b | 0.33 ± 0.06 ab | 36.25 ± 8.76 b |
6% | 0.97 ± 0.001 | 11.35 ± 0.5 ab | 0.47 ± 0.05 c | 66.23 ± 7.27 d | |
Chokeberry fiber | 3% | 0.97 ± 0.001 | 10.81 ± 0.8 a | 0.32 ± 0.03 ab | 14.91 ± 3.10 a |
6% | 0.96 ± 0.001 | 11.73 ± 0.6 b | 0.30 ± 0.02 ab | 20.81 ± 4.34 a |
Type of Samples | External Appearance | Smell and Taste | Texture | ||
---|---|---|---|---|---|
Control | crust color: slightly brown, toasted, creamy crumb, even pores | cereal (flour), mildly yeasty, mildly sweet | springy, fluffy, aerated | ||
Apple fiber | 3% | crust color: gray-brown toasted, crumb light brown, irregular pores | cereal (flour), yeasty, slightly sour slightly bitter | quite springy, aerated, compact, moist, after 5 h of storage crumbly texture | |
6% | crust color: brown, toasted, crumb brown, irregular pores | cereal (floury), yeasty, sour, bitter | compact, moist, not very springy, very brittle texture after 5 h of storage | ||
Cocoa fiber | 3% | crust color: dark brown, toasted, crumb dark brown, irregular pores | cereal (flour), yeast, bitter, cocoa | quite springy, aerated, compact, moist, after 5 h of storage crumbly texture | |
6% | crust color: very dark brown, almost black, toasted, crumb: intense brown, irregular pores | cereal (flour), yeasty, bitter, intense cocoa | compact, moist, not very springy; very brittle texture after 5 h of storage | ||
Chokeberry fiber | 3% | crust color: dark brown with a purple tinge, toasted, crumb: brown with a purple tinge, irregular pores | cereal (floury), yeasty, mildly fruity—berry, mildly bitter | springy, aerated, fluffy, moist, very similar to the control sample | |
6% | crust color: dark brown with a purple tinge, toasted, crumb intensely brown with a purple tinge, irregular pores | cereal (floury), yeasty, mildly fruity—berry, mildly bitter | springy, aerated, fluffy, moist, similar to the control sample |
Type of Rolls | Energy Value | Fat (including Saturated Fatty Acids) | Carbohydrates (including Sugars) | Fiber | Protein | Salt | |
---|---|---|---|---|---|---|---|
Control | 308.00 | 7.15 (3.98) | 50.34 (2.62) | 1.72 | 9.93 | 1.20 | |
Apple fiber | 3% | 309.63 | 7.31 (4.04) | 49.46 (2.61) | 3.77 | 9.88 | 1.21 |
6% | 300.56 | 7.22 (3.96) | 46.88 (2.51) | 5.66 | 9.48 | 1.11 | |
Cocoa fiber | 3% | 298.26 | 7.14 (3.93) | 46.81 (2.49) | 4.05 | 9.88 | 1.10 |
6% | 292.19 | 7.21 (3.93) | 43.93 (2.49) | 6.34 | 9.93 | 1.11 | |
Chokeberry fiber | 3% | 289.11 | 7.00 (3.83) | 46.83 (2.69) | 3.53 | 9.44 | 1.10 |
6% | 283.80 | 7.18 (3.83) | 45.53 (2.88) | 5.45 | 9.38 | 1.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, A.; Świderski, F.; Siol, M.; Niedziółka, D.; Najman, K. Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls). Agriculture 2022, 12, 1715. https://doi.org/10.3390/agriculture12101715
Sadowska A, Świderski F, Siol M, Niedziółka D, Najman K. Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls). Agriculture. 2022; 12(10):1715. https://doi.org/10.3390/agriculture12101715
Chicago/Turabian StyleSadowska, Anna, Franciszek Świderski, Marta Siol, Dominika Niedziółka, and Katarzyna Najman. 2022. "Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls)" Agriculture 12, no. 10: 1715. https://doi.org/10.3390/agriculture12101715
APA StyleSadowska, A., Świderski, F., Siol, M., Niedziółka, D., & Najman, K. (2022). Functional Properties of Fruit Fibers Preparations and Their Application in Wheat Bakery Products (Kaiser Rolls). Agriculture, 12(10), 1715. https://doi.org/10.3390/agriculture12101715