Wheat Crop Yield and Changes in Soil Biological and Heavy Metals Status in a Sandy Soil Amended with Biochar and Irrigated with Drainage Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Crop Lysimeters Experiment
2.1.1. Experimental Materials and Design
2.1.2. Lysimeter Experiment Construction
2.1.3. Evaluation of Al-Moheet Drainage Water Quality for Irrigation
2.2. Incubation Experiment
2.2.1. Soil Microbial Biomass
2.2.2. Soil Resistance Index (SRI)
2.2.3. Sandy Soil Enzymatic Activity
2.3. Statistical Analyses
3. Results and Discussion
3.1. Wheat Crop Lysimeters Experiment
3.1.1. Evaluation of Al-Moheet Drainage Water Quality for Irrigation
3.1.2. Combined Impacts of Corncob Biochar and Drainage Water on Wheat Productivity and Quality Characteristics
3.1.3. Combined Impacts of Corncob Biochar and Drainage Water on Lysimeters Soil Leachate Composition
3.1.4. Combined Impacts of Corncob Biochar and Drainage Water on Soil Heavy Metals Accumulation and Movements
3.1.5. Combined Impacts of Corncob Biochar and Drainage Water on Wheat Uptake of Heavy Metals
3.2. Incubation Experiment
3.2.1. Combined Effects of Corncob Biochar and Drainage Water on Microbial Biomass in a Sandy Soil
3.2.2. Combined Effects of Corncob Biochar and Drainage Water on Soil Resistance Index (SRI)
3.2.3. Combined Effects of Corncob Biochar and Drainage Water on Soil Enzymatic Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omran, E.S.E.; Negm, A.M. (Eds.) Technological and Modern Irrigation Environment in Egypt: Best Management Practices Evaluation; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Ouda, S.; Noreldin, T.; Zohry, A. Field crops and deficit irrigation in Egypt. In Deficit Irrigation; Springer: Cham, Switzerland, 2020; pp. 59–83. [Google Scholar] [CrossRef]
- Abd El-Azeim, M.M.; Sherif, M.A.; Hussien, M.S.; Haddad, S.A. Temporal impacts of different fertilization systems on soil health under arid conditions of potato monocropping. J. Soil Sci. Plant Nutr. 2020, 20, 322–334. [Google Scholar] [CrossRef]
- Abd El-Azeim, A.; Salah, Z.M.; Hammam, A.A. Assessment of water hyacinth biochar as a soil amendment for sandy soils. J. Soil Sci. Agric. Eng. 2021, 12, 431–444. [Google Scholar] [CrossRef]
- Haddad, S.A.; Mowrer, J.; Thapa, B. Biochar and compost from cotton residues inconsistently affect water use efficiency, nodulation, and growth of legumes under arid conditions. J. Environ. Manag. 2022, 307, 114558. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, A.A.; Metwalley, S.M.; Abbas, H.H. Irrigation: Water resources, types and common problems in Egypt. In Technological and Modern Irrigation Environment in Egypt; Springer: Cham, Switzerland, 2020; pp. 15–34. [Google Scholar] [CrossRef]
- Abbas, G.; Abrar, M.M.; Naeem, M.A.; Siddiqui, M.H.; Ali, H.M.; Li, Y.; Xu, M. Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: Multivariate comparison of physiological and oxidative stress attributes. J. Soils Sediments 2022, 22, 1446–1459. [Google Scholar] [CrossRef]
- Khadem, A.; Raiesi, F.; Besharati, H.; Khalaj, M.A. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar 2021, 3, 105–116. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. Soil Management For Sustainable Agriculture, 1st ed.; Chapter An Overview of Biochar Application on Biological Soil Health Indicators and Greenhouse Gas Emission; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 143–169. [Google Scholar] [CrossRef]
- Haddad, S.A.; Lemanowicz, J. Benefits of corn-cob biochar to the microbial and enzymatic activity of soybean plants grown in soils contaminated with heavy metals. Energies 2021, 14, 5763. [Google Scholar] [CrossRef]
- Jia, S.; Tian, Y.; Li, J.; Chu, X.; Zheng, G.; Liu, Y.; Zhao, W. Field study on the characteristics of scales in damaged multi-material water supply pipelines: Insights into heavy metal and biological stability. J. Hazard. Mater. 2022, 424, 127324. [Google Scholar] [CrossRef]
- Wojewódzki, P.; Lemanowicz, J.; Dębska, B.; Haddad, S.A. Soil enzyme activity response under the amendment of different types of biochar. Agronomy 2022, 12, 569. [Google Scholar] [CrossRef]
- Haddad, S.A.; Lemanowicz, J.; Abd El-Azeim, M.M. Cellulose decomposition in clay and sandy soils contaminated with heavy metals. Int. J. Environ. Sci. Technol. 2019, 16, 3275–3290. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar] [CrossRef]
- Ahmed, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Liu, J.; Che, X.; Huang, X.; Mo, Y.; Wen, Y.; Jia, J.; Yan, B. The interaction between biochars from distinct pyrolysis temperatures and multiple pollutants determines their combined cytotoxicity. Chemosphere 2022, 296, 133999. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Kammann, C.I.; Shepherd, J.G.; Conte, P.; Schmidt, H.P.; Hagemann, N.; Graber, E.R. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 2018, 618, 1210–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, C.A. Method of soil analysis part 2. Chem. Microbiol. Prop. 1965, 9, 1387–1388. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis Part 2; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Avery, B.W.; Bascomb, C.L. Soil survey laboratory methods. In Soil Survey of England and Wales; Roth Amsted Experimental Station: Harpenden, UK, 1982. [Google Scholar]
- ISO 11466; Soil Quality-Extraction of Trace Metals Soluble in Aqua Regia. International Organization for Standardization: Genève, Switzerland, 1995; 6p.
- ISO, D. 11047; Soil Quality–Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Nickel and Zinc in Aqua Regia Extracts of Soil-Flame and Electrothermal Atomic Absorption Spectrometric Methods. Institute for Standardization: Berlin, German, 1998.
- U.S. Environmental Protection Agency. Regulatory Impact Analysis of the Part 503 Sewage Sludge Regulations; U.S. Environmental Protection Agency: Washington, WA, USA, 1993; EPA/821/R-93/006. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Waveland Press: Long Grove, IL, USA; Prentice Hall: Upper Saddle River, NJ, USA, 1994. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater. 2012. Available online: https://engage.awwa.org/PersonifyEbusiness/Store/Product (accessed on 21 September 2022).
- Martin, J.P. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950, 69, 215–232. [Google Scholar] [CrossRef]
- Orwin, K.H.; Wardle, D.A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil enzymes. Methods Soil Anal. Part 2 Microbiol. Biochem. Prop. 1994, 5, 775–833. [Google Scholar]
- Alef, K.; Kleiner, D. Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol. Fertil. Soils 1987, 5, 148–151. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT Technical Report: Spatial Prediction Using the SAS System; SAS Institute: Cary, NC, USA, 1996. [Google Scholar]
- Ayers, R.S.; Westcott, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage: Rome, Italy, 1994. [Google Scholar]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Sánchez-Monedero, M.A.; Kammann, C. Biochar as an additive to compost and growing media. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Science, Technology and Implementation, Earthscan: London, UK, 2015; pp. 717–736. [Google Scholar]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Abd El-Azeim, M.A.; Haddad, S.A. Effect of biochar on sandy soil health under arid and semiarid conditions. In Proceedings of the Sixth International Conference on Environmental Management (CEMEPE and SECOTOX), Thessaloniki, Greece, 25–30 June 2017. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Farrell, M.; Kuhn, T.K.; Macdonald, L.M.; Maddern, T.M.; Murphy, D.V.; Hall, P.A.; Baldock, J.A. Microbial utilization of biochar-derived carbon. Sci. Total Environ. 2013, 465, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- de Vries, F.T.; Hoffland, E.; van Eekeren, N.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.D.; Denef, K.; Stewart, C.E.; Zheng, J.; Cotrufo, M.F. Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur. J. Soil Sci. 2013, 5, 28–39. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, N.; Guo, Y.; Guo, R.; Jiang, T.; Wang, Y.; Sun, H. Biochar microtube interconnected hydrotalcite nanosheets for the adsorption of aqueous Sb (III). Nanotechnology 2022, 33, 275704. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, X.; Suo, F.; You, X.; Yuan, Y.; Cheng, Y.; Li, Y. Effect of biochar and hydrochar from cow manure and reed straw on lettuce growth in an acidified soil. Chemosphere 2022, 298, 134191. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.; Fu, S.; Méndez, A.; Gascó, G.; Paz-Ferreiro, J. Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging. Water Air Soil Pollut. 2015, 226, 164. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Hua, M.; Reckling, M.; Wirth, S.; Bellingrath-Kimura, S.D. Potential effects of biochar-based microbial inoculants in agriculture. Environ. Sustain. 2018, 1, 19–24. [Google Scholar] [CrossRef]
- Cui, L.; Yan, J.; Yang, Y.; Li, L.; Quan, G.; Ding, C.; Chang, A. Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources 2013, 8, 5536–5548. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, J.A.; Berry, C.M.; Strawn, D.G.; Novak, J.M.; Levine, J.; Harley, A. Biochars reduce mine land soil bioavailable metals. J. Environ. Qual. 2017, 46, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, B.T.; Nguyen, V.N.; Nguyen, T.X.; Nguyen, M.H.; Dong, H.P.; Dinh, G.D.; Phan, B.T.; Pham, T.V.; Thai, N.V.; Tran, H.T.T. Biochar enhanced rice (Oryza sativa L.) growth by balancing crop growth-related characteristics of two paddy soils of contrasting textures. J. Soil Sci. Plant Nutr. 2022, 22, 2013–2025. [Google Scholar] [CrossRef]
- Hachicha, M.; Kahlaoui, B.; Khamassi, N.; Misle, E.; Jouzdan, O. Effect of electromagnetic treatment of saline water on soil and crops. J. Saudi Soc. Agric. Sci. 2018, 17, 154–162. [Google Scholar] [CrossRef]
- Ismail, W.H.; Mutwali, E.M.; Salih, E.A.; Elmoula, E.T. Effect of magnetized water on seed germination, growth and yield of rocket plant (Eruca sativa Mill). SSRG Int. J. Agric. Env. Sci. 2020, 7, 34–38. [Google Scholar] [CrossRef]
- Sawyer, E.W. Melt segregation in the continental crust. Geology 1994, 22, 1019–1022. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO Land Water Sci. Rep. 2009, 5, 17–31. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Mawof, A.; Prasher, S.; Bayen, S.; Nzediegwu, C. Effects of biochar and biochar-compost mix as soil amendments on soil quality and yield of potatoes irrigated with wastewater. J. Soil Sci. Plant Nutr. 2021, 21, 2600–2612. [Google Scholar] [CrossRef]
- Biederman, L.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Watzinger, A.; Feichtmair, S.; Kitzler, B.; Zehetner, F.; Kloss, S.; Wimmer, B.; Soja, G. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: Results from a short-term incubation and pot experiment. Eur. J. Soil Sci. 2014, 65, 40–51. [Google Scholar] [CrossRef]
Soil Property | |
---|---|
Sand (%) | 90.30 |
Silt (%) | 7.14 |
Clay (%) | 2.56 |
Texture grade | Sand |
F.C [%] | 14.98 |
PWP [%] | 4.45 |
WHC [%] | 19.22 |
AV. W (F.C—PWP) [%] | 10.53 |
BD g cm3 | 1.63 |
PD g cm3 | 2.61 |
pH in H2O | 8.59 (8.31) * |
CEC [cmolc kg−1 soi] | 3.60 |
ECe [dS m−1] | 1.56 |
OM [g kg−1] | 2.8 ** |
SOC [g kg−1] | 1.62 |
TN [g kg−1] | 0.15 |
SOC/TN | 10.80 |
TP [g kg−1] | 0.09 |
TK [g kg−1] | 1.7 |
TNi [mg kg−1] | 46.20 |
TPb [mg kg−1] | 57.00 |
TCd [mg kg−1] | 4.10 |
Biochar Property | |
---|---|
BD [g cm3] * | 0.29 |
WHC [%] | 72.78 |
pH in H2O | 6.38 |
EC [dS m−1] | 0.651 |
CEC [cmol(+) kg−1 soil] | 54.44 |
Ash [%] | 8.59 |
TOC [g kg−1] | 368 |
TN [g kg−1] | 17.80 |
TOC/TN | 20.67 |
TP [g kg−1] | 3.5 |
TN/TP | 5.08 |
K+ [mg kg−1] | 483.7 |
Ca2+ [mg kg−1] | 668.9 |
Mg2+ [mg kg−1] | 142.7 |
TNi [mg kg−1] | 15.89 |
TPb [mg kg−1] | 11.87 |
TCd [mg kg−1] | 0.76 |
Chemical Composition | |
---|---|
pH | 8.89 |
EC [dS m−1] | 5.89 |
TDS [mg L−1] | 4712 |
Soluble Ca2+ [mmolc L−1] | 40.54 |
Soluble Mg2+ [mmolc L−1] | 21.82 |
Soluble Na+ [mmolc L−1] | 25.73 |
Soluble K+ [mmolc L−1] | 2.67 |
Soluble Cl− [mmolc L−1] | 32.78 |
Soluble SO42− [mmolc L−1] | 41.89 |
Soluble HCO3− + CO32− [mmolc L−1] | 16.78 |
Water Heavy Metals Content | |
Ni [mg L−1] | 120 |
Pb [mg L−1] | 75 |
Cd [mg L−1] | 3.6 |
Chemical Criteria | |
SAR | 4.61 |
Ca2+/Mg2+ | 1.86 |
MH [%] | 34.99 |
Na+/Cl− | 0.78 |
Na [%] | 31.39 |
RSC Residual Sodium Carbonate | <1.25 |
Treatment Rate | Spike Length [cm] | 1000-Grain Weight [g] | Grain Yield [t ha−1] | Straw Yield [t ha−1] | Biological Yield [t ha−1] | Harvest Index [%] |
---|---|---|---|---|---|---|
Biochar Incorporated | ||||||
0% | 9.55 b* | 40.13 b | 4.75 d | 6.63 c | 11.38 c | 41.74 |
1% | 8.99 b | 39.06 b | 4.89 c | 6.85 bc | 11.74 bc | 41.65 |
2% | 9.26 b | 37.45 b | 6.22 b | 8.17 b | 14.39 b | 43.24 |
3% | 10.69 a | 43.28 a | 6.94 a | 8.81 a | 15.75 a | 44.06 |
Biochar Mulching | ||||||
0% | 9.55 b | 40.13 b | 4.75 d | 6.63 c | 11.38 c | 41.74 |
1% | 8.99 b | 39.06 b | 4.92 c | 6.91 bc | 11.83 bc | 41.59 |
2% | 9.26 b | 37.45 b | 6.35 b | 8.26 b | 14.61 b | 43.46 |
3% | 10.69 a | 43.28 a | 6.91 a | 8.97 a | 15.88 a | 43.51 |
Biochar Rate | Soil Chemical Properties | Soil Particle Size % | Soil Moisture % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TN | pH | CEC | EC | OM | Sand | Silt | Clay | WHC | FC | PWP | AV. W | |
0% | 0.015 c* | 8.59 a | 3.60 d | 1.56 c | 0.28 d | 90.30 a | 7.14 d | 2.56 d | 19.22 d | 14.98 d | 4.45 a | 10.53 d |
1% | 0.05 b | 8.31 b | 6.60 c | 2.08 b | 0.58 c | 87.00 b | 9.50 a | 3.50 c | 21.4 c | 16.35 c | 4.10 c | 12.25 c |
2% | 0.06 b | 8.31 b | 8.80 b | 2.11 b | 0.66 b | 85.30 c | 8.10 c | 6.60 a | 23.12 b | 18.22 b | 4.30 b | 13.92 b |
3% | 0.08 a | 8.22 c | 11.30 a | 2.36 a | 0.89 a | 85.10 d | 8.60 b | 6.30 b | 25.14 a | 19.35 a | 4.50 a | 14.85 a |
Element | Biochar Rate | Elements Concentrations in Leachate Fractions mg L−1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25 Days | 50 Days | 75 Days | 100 Days | 125 Days | 150 Days | ||||||||
Inc. | Mul. | Inc. | Mul. | Inc. | Mul. | Inc. | Mul. | Inc. | Mul. | Inc. | Mul. | ||
0% | 1.08 * | 1.08 | 4.0 a | 4.06 a | 3.05 a | 3.05 a | 5.05 a | 5.05 a | 5.06 a | 4.42 a | 6.09 a | 6.07 a | |
1% | 0.17 | 0.13 | 0.26 b | 0.17 b | 0.26 b | 0.07 b | 0.06 b | 0.07 b | 0.05 b | 1.5 b | 1.56 b | 1.90 b | |
Ni | 2% | UMDL | UMDL | 0.16 b | 0.18 b | 0.16 b | 0.07 b | 0.06 b | 0.08 b | 0.08 b | 0.06 b | 0.46 b | 0.88 b |
3% | UMDL | UMDL | 0.06 b | 0.08 b | 0.07 b | 0.07 b | 0.07 b | 0.07 b | 0.07 b | 0.06 b | 1.61 b | 0.78 b | |
0% | 1.08 | 1.05 | 2.07 a | 2.07 a | 0.74 a | 0.74 a | 2.07 a | 2.07 a | 2.07 a | 2.07 a | 4.78 a | 4.11 a | |
Pb | 1% | UMDL | UMDL | 0.08 b | 0.08 b | 0.09 b | 0.09 b | 0.09 b | 0.08 bc | 0.08 b | 0.08 b | 1.45 bc | 2.9 ab |
2% | UMDL | UMDL | 0.08 b | 0.09 b | 0.08 b | 0.08 b | 0.09 b | 0.08 bc | 0.09 b | 0.09 b | 1.22 b | 1.09 bc | |
3% | UMDL | UMDL | 0.08 b | 0.08 b | 0.08 b | 0.08 b | 0.06 d | 0.07 cd | 0.08 b | 0.08 b | 1.07 bc | 0.89 c | |
0% | 0.12 | UMDL | 0.17 a | 0.26 a | 0.17 a | 0.17 a | 0.17 a | 0.15 a | 0.17 a | 0.15 a | 0.67 a | 0.34 b | |
Cd | 1% | 0.15 | UMDL | 0.06 c | 0.08 cb | 0.09 b | 0.09 b | 0.12 ab | 0.08 b | 0.08 b | 0.08 b | 0.19 c | 0.19 c |
2% | UMDL | UMDL | 0.08 bc | 0.09 cb | 0.09 b | 0.09 b | 0.09 b | 0.08 b | 0.09 b | 0.08 b | 0.06 d | 0.05 d | |
3% | UMDL | UMDL | 0.08 bc | 0.08 bc | 0.08 b | 0.08 b | 0.08 b | 0.07 b | 0.08 b | 0.08 b | 0.05 d | 0.07 d |
Treatments Rate | Soil Total Metals [mg kg−1] | Extractable Heavy Metals [mg kg−1] | ||||
---|---|---|---|---|---|---|
Ni | Pb | Cd | Ni | Pb | Cd | |
Biochar Incorporated | ||||||
0% | 48.27 d* | 58.20 d | 4.60 a | 1.37 b | 1.53 d | 0.04 d |
1% | 51.30 c | 68.30 c | 4.90 a | 2.90 a | 3.73 c | 1.03 ab |
2% | 56.40 ab | 74.60 b | 5.40 a | 3.13 a | 4.87 ab | 1.03 b |
3% | 59.60 a | 81.50 a | 6.40 a | 3.27 a | 5.23 a | 1.05 a |
Biochar Mulching | ||||||
0% | 46.20 d | 58.20 d | 4.60 a | 1.37 b | 1.53 d | 0.04 d |
1% | 48.27 c | 67.60 c | 4.30 a | 2.97 a | 3.93 bc | 0.10 c |
2% | 55.20 b | 75.10 b | 5.20 a | 3.13 a | 4.83 ab | 1.04 ab |
3% | 58.60 ab | 80.30 a | 5.90 a | 3.47 a | 5.03 a | 1.05 ab |
Treatments Rate | Soil Total Metals [mg kg−1] | Extractable Heavy Metals [mg kg−1] | ||||
---|---|---|---|---|---|---|
Ni | Pb | Cd | Ni | Pb | Cd | |
Biochar Incorporated | ||||||
0% | 46.26 a* | 57.40 b | 4.20 d | 1.23 c | 1.40 c | 0.04 b |
1% | 46.60 a | 59.20 a | 4.20 d | 1.37 bc | 2.17 a | 0.04 b |
2% | 47.90 a | 60.30 a | 3.90 e | 1.67 a | 1.80 b | 0.06 b |
3% | 47.50 a | 60.30 a | 4.40 b | 1.47 b | 2.30 a | 0.08 b |
Biochar Mulching | ||||||
0% | 46.26 a | 57.40 b | 4.20 d | 1.23 c | 1.47 c | 0.04 b |
1% | 47.10 a | 59.87 a | 4.30 d | 1.27 c | 1.83 b | 0.60 a |
2% | 47.50 a | 59.10 a | 4.50 a | 1.47 b | 4.50 a | 0.07 b |
3% | 47.10 a | 60.43 a | 4.40 b | 1.30 c | 2.20 a | 0.06 b |
Treatments Rate | Wheat Tissues [mg kg−1] | Wheat Grains [mg kg−1] | ||||
---|---|---|---|---|---|---|
Ni | Pb | Cd | Ni | Pb | Cd | |
Biochar Incorporation | ||||||
0% | 15.50 a* | 30.30 b | 4.60 d | 7.93 a | 20.87 a | 1.06 a |
1% | 10.50 b | 29.70 ab | 4.10 d | 7.50 a | 19.00 a | 0.13 d |
2% | 11.10 b | 28.90 b | 3.90 e | 8.40 a | 20.33 a | 0.15 d |
3% | 11.60 ab | 30.20 ab | 4.40 b | 7.90 a | 20.60 a | 0.19 ab |
Biochar Mulching | ||||||
0% | 15.50 a | 32.30 b | 4.50 d | 8.63 a | 20.83 a | 1.06 a |
1% | 12.20 ab | 31.40 ab | 4.30 c | 8.52 a | 19.57 a | 0.14 d |
2% | 11.90 ab | 33.50 a | 4.50 a | 8.43 a | 19.50 a | 0.18 c |
3% | 12.10 ab | 31.20 ab | 4.40 b | 8.57 a | 20.30 a | 0.21 b |
Treatments Rate | Days after Sandy Soil Incubation | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | |||||||||
F | B | F/B | F | B | F/B | F | B | F/B | F | B | F/B | |
Biochar Incorporation | ||||||||||||
0% | 15 d* | 18 d | 0.83 | 52 cd | 48 cd | 1.08 | 92 d | 97 bc | 0.94 | 96 c | 95 c | 1.01 |
1% | 28 bc | 23 c | 1.20 | 61 c | 51 c | 1.19 | 113 c | 101 bc | 1.11 | 140 ab | 113 bc | 1.23 |
2% | 33 ab | 31 ab | 1.06 | 74 ab | 65 ab | 1.13 | 129 a | 109 ab | 1.18 | 143 ab | 129 ab | 1.11 |
3% | 35 a | 33 a | 1.06 | 79 a | 77 a | 1.02 | 128 ab | 119 a | 1.07 | 154 a | 135 a | 1.14 |
Biochar mulching | ||||||||||||
0% | 15 d | 18 c | 0.83 | 52 d | 48 d | 1.08 | 92 d | 97 d | 0.94 | 96 c | 95 c | 1.01 |
1% | 31 bc | 28 ab | 1.10 | 79 bc | 72 c | 1.09 | 146 c | 123 bc | 1.10 | 152 ab | 150 ab | 1.01 |
2% | 36 ab | 31a | 1.16 | 85 b | 99 ab | 0.85 | 158 ab | 133 b | 1.18 | 153 ab | 154 a | 0.99 |
3% | 41 a | 30 ab | 1.36 | 104 a | 101a | 1.03 | 159 a | 152 a | 1.04 | 158 a | 150 ab | 1.05 |
Treatments Rate | Biochar Incorporation | Biochar Mulching | ||||
---|---|---|---|---|---|---|
Soil Resistance Index (SRI) of Bacteria to Heavy Metals | ||||||
Cd | Ni | Pb | Cd | Ni | Pb | |
1% | 0.15 b* | 0.25 c | 0.24 c | 0.21 c | 0.38 c | 0.41 c |
2% | 0.26 a | 0.33 b | 0.34 b | 0.33 a | 0.43 b | 0.56 b |
3% | 0.26 a | 0.35 a | 0.47 a | 0.32 b | 0.51 a | 0.64 a |
Soil Resistance Index (SRI) of Fungi to Heavy Metals | ||||||
Cd | Ni | Pb | Cd | Ni | Pb | |
1% | 0.11 c | 0.26 c | 0.41 c | 0.16 c | 0.28 c | 0.45 c |
2% | 0.22 b | 0.45 ab | 0.57 b | 0.27 ab | 0.49 a | 0.59 b |
3% | 0.24 a | 0.42 a | 0.64 a | 0.28 a | 0.47 b | 0.67 a |
Treatments Rate | Biochar-Soil Incorporation Applied | Biochar-Soil Mulching Applied | ||
---|---|---|---|---|
AR * | UR | AR | UR | |
After 5 Days of Incubation | ||||
0% | 13.43 d** | 7.65 d | 15.11 d | 6.87 d |
1% | 26.78 bc | 15.44 bc | 27.78 bc | 13.96 bc |
2% | 28.43 ab | 16.38 b | 29.45 ab | 14.35 b |
3% | 32.33 a | 18.15 a | 32.78 a | 17.43 a |
After 10 Days of Incubation | ||||
0% | 15.44 d | 8.56 d | 16.16 d | 8.27 d |
1% | 36.78 c | 26.37 bc | 26.89 bc | 16.46 bc |
2% | 40.89 ab | 28.88 b | 30.56 ab | 18.91 b |
3% | 40.99 a | 35.96 a | 30.78 a | 24.88 a |
After 20 Days of Incubation | ||||
0% | 15.67 d | 9.61 d | 14.87 d | 9.59 d |
1% | 40.76 bc | 31.57 bc | 31.56 bc | 18.47 bc |
2% | 43.56 b | 30.27 b | 31.87 b | 19.69 b |
3% | 49.67 a | 39.88 a | 38.98 a | 25.35 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El-Azeim, M.M.; Menesi, A.M.; Abd El-Mageed, M.M.; Lemanowicz, J.; Haddad, S.A. Wheat Crop Yield and Changes in Soil Biological and Heavy Metals Status in a Sandy Soil Amended with Biochar and Irrigated with Drainage Water. Agriculture 2022, 12, 1723. https://doi.org/10.3390/agriculture12101723
Abd El-Azeim MM, Menesi AM, Abd El-Mageed MM, Lemanowicz J, Haddad SA. Wheat Crop Yield and Changes in Soil Biological and Heavy Metals Status in a Sandy Soil Amended with Biochar and Irrigated with Drainage Water. Agriculture. 2022; 12(10):1723. https://doi.org/10.3390/agriculture12101723
Chicago/Turabian StyleAbd El-Azeim, Mohieyeddin M., Ahmad M. Menesi, Mahmoud M. Abd El-Mageed, Joanna Lemanowicz, and Samir A. Haddad. 2022. "Wheat Crop Yield and Changes in Soil Biological and Heavy Metals Status in a Sandy Soil Amended with Biochar and Irrigated with Drainage Water" Agriculture 12, no. 10: 1723. https://doi.org/10.3390/agriculture12101723
APA StyleAbd El-Azeim, M. M., Menesi, A. M., Abd El-Mageed, M. M., Lemanowicz, J., & Haddad, S. A. (2022). Wheat Crop Yield and Changes in Soil Biological and Heavy Metals Status in a Sandy Soil Amended with Biochar and Irrigated with Drainage Water. Agriculture, 12(10), 1723. https://doi.org/10.3390/agriculture12101723