Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site Description, Crop Management, Soil Sampling, and Basic Properties
2.2. Carbon and Its Fractions
- Very labile fraction (Cfrac1) = organic C oxidizable under 12 M of H2SO4.
- Labile fraction (Cfrac2) = the subtraction of organic C oxidizable under 18 M from that under 12 M of H2SO4.
- Less labile fraction (Cfrac3) = the subtraction of organic C oxidizable extracted between 24 M and 18 M.
- Non-Labile fraction (Cfrac4) = remaining organic C after oxidation with 24 M of H2SO4 as compared to the TOC.
2.3. Enumeration of Soil Microbial Counts
2.4. Soil Enzyme Activities
2.5. Functional Group Characterization of the Soil Samples
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Physical Properties and C Pools
3.2. Soil Microbial Viable Cell Counts in Different Residue Management Treatments and Soil Depths
3.3. Soil Enzymatic Assay
3.4. Yield and Uptake of Nitrogen, Phosphorus and Potassium as Affected by Different Tillage Practices
3.5. Functional Group Characterization of the Soil Samples
3.6. Principal Component Analysis (PCA) for Microbial Population and Soil Enzyme Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTA. 2018. Available online: Thttp://www.fao.org/faostat/en/#data/QC (accessed on 14 November 2021).
- Kumari, M.; Chakraborty, D.; Gathala, M.K.; Pathak, H.; Dwivedi, B.S.; Tomar, R.K.; Garg, R.N.; Singh, R.; Ladha, J.K. Soil aggregation and associated organic carbon fractions as affected by tillage in a rice-wheat rotation in North India. Soil Sci. Soc. Am. J. 2011, 75, 560–567. [Google Scholar] [CrossRef]
- Humphreys, E.; Kukal, S.S.; Christen, E.W.; Hira, G.S.; Singh, B.; Yadav, S.; Sharma, R.K. Halt in the groundwater decline in north-west India: Which crop technologies will be winner. Adv. Agron. 2010, 109, 155–217. [Google Scholar]
- Yadvinder-Singh; Kukal, S.S.; Jat, M.L.; Sidhu, H.S. Iproving water productivity of wheat-based cropping systems in South Asia for sustained productivity. Adv. Agron. 2014, 127, 157–258. [Google Scholar]
- Hayashi, K.; Ono, K.; Kajiura, M.; Sudo, S.; Yonemura, S.; Fushimi, A.; Saitoh, K.; Fujitani, Y.; Tanab, K. Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide methane and particulate organic carbon. Atmos. Environ. 2014, 95, 36–44. [Google Scholar] [CrossRef]
- Lohan, S.K.; Ram, T.; Mukesh, S.; Ali, M.; Arya, S. Sustainability of biodiesel production as vehicular fuel in Indian perspective. Renew. Sustain. Energy Rev. 2013, 25, 251–259. [Google Scholar] [CrossRef]
- Jain, N.; Bhatia, A.; Pathak, H. Emission of air pollutants from crop residue burning in India. Aerosol. Air Qual. Res. 2014, 14, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Shafie, S.M. A review on paddy residue-based power generation: Energy, environment and economic perspective. Renew. Sustain. Energy Rev. 2013, 59, 1089–1100. [Google Scholar] [CrossRef]
- Ladha, J.K.; Yadvinder-Singh; Erenstein, O.; Hardy, B. Integrated Crop and Resource Management in the Rice–Wheat System of South Asia; International Rice Research Institute Los Banos: Laguna, Philippines, 2009; p. 395. [Google Scholar]
- Van Soest, P.J. Rice straw, the role of silica and treatments to improve quality. Anim. Feed Sci. Technol. 2006, 130, 137–171. [Google Scholar] [CrossRef]
- Kaur, A. Crop Residue in Punjab Agriculture-Status and Constraints. J. Krishi Vigyan 2017, 5, 22. [Google Scholar] [CrossRef]
- Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C.; Tiwari, M.K.; Gupta, R.K.; Garg, S.C. Residue burning in rice–wheat cropping system: Causes and implications. Curr. Sci. 2004, 87, 1713–1717. [Google Scholar]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Mandal, K.G.; Misra, A.K.; Kuntal, M.H.; Bandyopadhyay, K.K.; Ghosh, P.K.; Mohanty, M. Rice residue Management options and effects on soil properties and crop productivity. Food Agric. Environ. 2004, 2, 224–231. [Google Scholar]
- Sidhu, B.S.; Beri, V. Experience with managing rice residue in intensive rice-wheat cropping system in Punjab. In Conservation Agriculture-Status and Prospects; Abrol, I.P., Gupta, R.K., Malik, R.K., Eds.; Centre for Advancement of Sustainable Agriculture (CASA): New Delhi, India, 2005; pp. 55–63. [Google Scholar]
- Raza, M.H.; Abid, M.; Faisal, M.; Yan, T.; Akhtar, S.; Adnan, K.M.M. Environmental and Health Impacts of Crop Residue Burning: Scope of Sustainable Crop Residue Management Practices. Int. J. Environ. Res. Public Health 2022, 19, 4753. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Yadvinder-Singh; Bijay-Singh; Ladha, J.K.; Khind, C.S.; Khera, T.S.; Bueno, C.S. Effects of residue decomposition on productivity and soil fertility in rice–wheat rotation. Soil Sci. Soc. Am. J. 2004, 68, 854–864. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.Q.; Tang, Z.H.; Chen, X.H.; Yu, Y.S. Burning straw air pollution and respiratory infections in China. Am. J. Infect. Control 2014, 42, 81–87. [Google Scholar] [CrossRef]
- Mandal, B.; Majumder, B.; Bandopadhyay, P.K.; Hazra, G.C.; Gangopadhyay, A.; Samantaroy, R.N.; Misra, A.K.; Chowdhuri, J.; Saha, M.N.; Kundu, S. The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Glob. Chang. Biol. 2007, 13, 357–369. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra-Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The performance of visible near and mid-infrared reflectance spectroscopy for prediction of soil physical chemical and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sediments 2018, 18, 2801–2812. [Google Scholar] [CrossRef] [Green Version]
- He, Y.T.; He, X.H.; Xu, M.G.; Zhang, W.J.; Yang, X.Y.; Huang, S.M. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across Central and South China. Soil Tillage Res. 2018, 177, 79–87. [Google Scholar] [CrossRef]
- Bera, T.; Sharma, S.; Thind, H.S.; Yadvinder-Singh; Sidhu, H.S.; Jat, M.L. Soil biochemical changes at different wheat growth stages in response to conservation agriculture practices in rice-wheat system of north-western India. Soil Res. 2017, 56, 91–401. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkenbein, P.; Meschke, K.; Kuka, K.; Klotz, S.; Heilmeier, H. Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump. Soil Biol. Biochem. 2013, 56, 87–89. [Google Scholar] [CrossRef]
- Bhowmik, A.; Fortuna, A.M.; Cihacek, L.; Bary, A.; Carr, P.M.; Cogger, C.G. Potential carbon sequestration and nitrogen cycling in long term organic management systems. Renew. Agric. Food Syst. 2017, 32, 498–510. [Google Scholar] [CrossRef]
- Nandi, N.; Rahman, F.H.; Sinha, N.B.; Hajra, J.N. Compatibility of lignin-degrading and cellulose decomposing fungi during decomposition of rice straw. J. Indian Soc. Soil Sci. 2000, 48, 387–389. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, Monograph 9; Klute, A., Ed.; ASA: Madison, WI, USA, 1986; pp. 363–367. [Google Scholar]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods; Klute, A., Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielson, D.R., Eds.; ASA and SSSA: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Walkley, A.; Black, C.A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 27–38. [Google Scholar]
- Snyder, J.D.; Trofymow, J.A. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Commun. Soil Sci. Plant Anal. 1984, 15, 587–597. [Google Scholar] [CrossRef]
- Chan, K.Y.; Bowman, A.; Oates, A. Oxidizable organic carbon fractions and soil quality changes in an oxicpaleustalf under different pasture leys. Soil Sci. 2001, 166, 61–67. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions based their degree of oxidation and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Powlson, D.S. The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.K.; Santoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Bremner, J.M.; Douglas, L.A. Inhibition of urease activity in soils. Soil Biol. Biochem. 1971, 3, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.X.; Wei, F.; Qiu, X.W.; Xu, X.F.; Zhang, B.; Guo, M. Influence of enhanced ultraviolet-B radiation during rice plant growth on rice straw decomposition with nitrogen deposition. Sci. Rep. 2018, 8, 14512. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. No tillage effects on soil properties under different crops in western Nigeria Proceedings. Soil Sci. Soc. J. 1976, 40, 762–768. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijimakers, J.; Mkuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosulski, T.; Korce, M. Effects of different mineral and organic fertilization on the content of nitrogen and carbon in soil organic matter fractions. Ecol. Chem. Eng. A 2011, 18, 601–608. [Google Scholar]
- Li, S.; Zhang, S.; Pu, Y.; Li, T.; Xu, X.; Jia, Y.; Gong, G. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil Tillage Res. 2016, 155, 289–297. [Google Scholar] [CrossRef]
- Parihar, C.M.; Parihar, M.D.; Sapkota, T.B.; Nanwal, R.K.; Singh, A.K.; Jat, S.L.; Nayak, H.S.; Mahala, D.M.; Singh, L.K.; Kakraliya, S.K.; et al. Long-term impact of conservation agriculture and diversified maize rotations carbon pools and stocks mineral nitrogen fractions and nitrous oxide fluxes in Inceptisoils of India. Sci. Total Environ. 2018, 640, 1382–1392. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Datta, M.; Mohapatra, K.P.; Singh, R.; Singh, V.K.; Rathode, S.S.; Chakraborty, M. Productivity soil health and carbon management index of Indian Himalayan intensified maize-based cropping systems under live mulch-based conservation tillage practices. Field Crop. Res. 2021, 264, 1080–1090. [Google Scholar] [CrossRef]
- Singh, R.K.; Sharma, G.K.; Kumar, P.; Singh, S.K.; Singh, R. Effect of crop residues management on soil properties and crop productivity of rice-wheat system in inceptisols of seemanchal region of Bihar. Br. J. Appl. Sci. Technol. 2019, 37, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bobby, L. Fungi ecosystems and global change. In The Fungi; Academic Press: Cambridge, MA, USA, 2016; pp. 361–400. [Google Scholar]
- Ghosh, P.K.; Das, A.; Saha, R.; Kharkrang, E.; Tripathy, A.K.; Mundu, G.C.; Ngachan, S.V. Conservation agriculture towards achieving food security in noth east India. Curr. Sci. 2010, 99, 915–921. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching material and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Xiao, S.; You, H.; You, W.; Liu, J.; Cai, C.; Wu, J.; Ji, Z.; Zhan, S.; Hu, Z.; Zhang, Z. Rhizosphere and bulk soil enzyme activities in a Nothotsugalongibracteata forest in the Tianbaoyan National Nature Reserve Fujian Province. China J. For. Res. 2016, 28, 521–528. [Google Scholar]
- Heidari, G.; Mohammadi, K.; Sohrabi, Y. Responses of soil microbial biomass and enzyme activities to tillage and fertilization systems in soybean (Glycine max L.) production. Front. Plant Sci. 2016, 7, 1730. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, B.; Chandra, R.; Ram, S.; Pareek, N. Long-term effects of fertilization and manuring on productivity and soil biological properties under rice (Oryza sativa)–wheat (Triticum aestivum) sequence in Mollisols. Arch. Agron. Soil Sci. 2016, 62, 109–122. [Google Scholar] [CrossRef]
- Kesarwani, A.; Shukla, R.; Singh, V.P.; Pandey, D.S.; Pramanick, B.; Yadav, S.K.; Rani, M. In-situ rice residue management under rice-wheat cropping system and their influence on wheat productivity. J. Pharmacogn. Phytochem. 2017, 6, 1422–1425. [Google Scholar]
- Meena, J.R.; Behera, U.K.; Chakraborty, D.; Sharma, A.R. Tillage and residue management effect on soil properties crop performance and energy relations in green gram (Vigna radiate L.) under maize-based cropping systems. Int. Soil Water Conserv. Res. 2015, 3, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Madejova, J. FTIR techniques in clay mineral studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Parikh, S.J.; Mukome, F.N.; Zhang, X. ATR-FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion of iron oxides. Colloids Surf. B. Bioinferences 2014, 119, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals: A review. Clay Miner. 2005, 40, 383–426. [Google Scholar] [CrossRef]
- Cocozza, C.; D’Orazio, V.; Miano, T.M.; Shotyk, W. Characterization of solid and aqueous phases of a peat bog profile using molecular fluorescence spectroscopy ESR and FT- IR and comparison with physical properties. Org. Geochem. 2003, 34, 49–60. [Google Scholar] [CrossRef]
- Legodi, M.A.; de Wall, D.; Potgieter, J.H.; Potgieter, S.S. Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy. Miner. Eng. 2001, 14, 1107–1111. [Google Scholar] [CrossRef]
- Poirier, N.; Sohi, S.P.; Gaunt, J.L.; Mahieu, N.; Randall, E.W.; Powlson, D.S.; Evershed, R.P. The chemical composition of measurable soil organic matter pools. Org. Geochem. 2005, 36, 1174–1189. [Google Scholar] [CrossRef]
- Niemeyer, J.; Chen, Y.; Bollag, J.M. Characterization of humic acids composts and peat by diffuse reflectance Fourier-Transform infrared spectroscopy. Soil Sci. Soc. Am. J. 1992, 56, 135–140. [Google Scholar] [CrossRef]
- Tivet, F.; Sa, J.C.M.; Lal, R.; Milori, D.M.B.P.; Briedis, C.; Letourmy, P.; Pinheiro, L.A.; Borszowski, P.R.; Hartman, D.C. Assessing humification and organic ompoundsds by laser-induced fluorescence and FTIR spectroscopies under conventional and no-till management Brazilian Oxisoils. Geoderma 2013, 207–208, 71–81. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ramble, A.; Kipling, S. Impact of no-tillage and conventional tillage systems on soil microbial communities. Appl. Environ. Soil Sci. 2012, 54, 8620. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Saikia, R.; Thind, H.S.; Yadvinder-Singh; Jat, M.L. Tillage, green manure and residue management accelerate soil carbon pools and hydrolytic enzymatic activities for conservation agriculture based rice-wheat systems. Commun. Soil Sci. Plant Anal. 2021, 52, 470–486. [Google Scholar] [CrossRef]
Treatments | MBC (mg kg −1) | KMnO4 Oxidizable C (mg kg−1) | KMnO4 Oxidizable C Mg ha−1 (LC) | Non-Labile C Mg ha−1 (NLC) | Carbon Pool Index (CPI) | Lability of C (LC/NLC) | Lability Index (LI) | CMI (CPI × LI × 100) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil Depths | Soil Depths | |||||||||||
0–15 | 15–30 | 30–45 | 0–15 | 15–30 | 30–45 | |||||||
CTW (–R) | 153.1d | 82.6c | 51.7c | 1208d | 987b | 797 | 2.50c | 18.08c | 0.138ab | |||
ZTW (+R) | 201.9b | 142.6a | 84.2a | 1504b | 1231a | 968 | 2.99ab | 20.66ab | 1.26b | 0.145a | 1.045a | 131.75b |
CTW (+R) | 184.1c | 103.3b | 71.5b | 1386c | 1123ab | 885 | 2.79b | 19.83abc | 1.17c | 0.141a | 1.023a | 120.06c |
ZTW (+WR) | 240.2a | 147.2a | 81.9a | 1596a | 1248a | 992 | 3.17a | 21.99a | 1.37a | 0.144a | 1.041a | 142.26a |
TW (RB) | 152.3d | 90.3bc | 54.8c | 1189d | 992b | 825 | 2.44c | 18.46bc | 1.05d | 0.132b | 0.956b | 99.98d |
Treatments | Bacterial Count (10−7) | Fungal Count (10−3) | Actinobacterial Count (10−4) | Cellulose Degrading Microorganisms (10−4) | ||||||||
Soil Depths (cm) | ||||||||||||
0–15 | 15–30 | 30–45 | 0–15 | 15–30 | 30–45 | 0–15 | 15–30 | 30–45 | 0–15 | 15–30 | 30–45 | |
CTW (–R) | 0.39e | 0.14d | 0.02d | 22.7d | 10.3d | 3.5c | 36.7d | 17.7cd | 3.3c | 27.9d | 14.3d | 3.8d |
ZTW (+R) | 1.53b | 0.86b | 0.27a | 44.7b | 26.7ab | 7.9a | 103.7b | 39.3b | 16.7a | 49.7b | 29.8b | 8.4a |
CTW (+R) | 1.06c | 0.64c | 0.17c | 34.3c | 23.7bc | 7.4b | 86.3c | 31.0c | 11.9b | 40.8c | 24.7c | 7.5b |
ZTW (+WR) | 1.72a | 1.18a | 0.31a | 54.3a | 32.1a | 8.9a | 111.7a | 58.7a | 18.3a | 54.1a | 34.8a | 8.9a |
ZTW (RB) | 0.25d | 0.18d | 0.05d | 20.7d | 18.3c | 3.5c | 23.3e | 19.3d | 4.7c | 22.2e | 18.4d | 4.9c |
Dehydrogenase Activity (μg TPF g−1 soil day−1) | Alkaline Phosphatase Activity (µg PNP formed g−1 soil h−1) | Urease Activity (μg urea hydrolyzed g−1 of soil h−1) | ||||||||||
CTW (–R) | 4.34e | 3.39c | 1.58b | 22.0c | 18.6c | 5.6b | 3.67b | 2.82 | 1.88 | |||
ZTW (+R) | 6.41b | 5.43a | 3.37a | 31.0b | 26.1ab | 13.7a | 4.40a | 3.44 | 2.28 | |||
CTW (+R) | 5.19c | 4.61b | 2.58a | 28.6bc | 20.7bc | 10.3ab | 4.21a | 3.33 | 2.13 | |||
ZTW (+WR) | 6.78a | 5.75a | 3.59a | 35.5a | 27.1a | 15.6a | 4.68a | 3.75 | 2.46 | |||
ZTW (RB) | 4.76d | 3.43c | 1.66b | 23.1bc | 19.6c | 6.2b | 3.62b | 2.86 | 1.99 |
Treatments | Grain Yield (q ha−1) | Straw Yield (q ha−1) | Biological Yield (q ha−1) | Harvest Index (%) | N Content (%) | N Uptake (kg ha−1) | P Content (%) | P Uptake (kg ha−1) | K Content (%) | K Uptake (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | Grains | Straw | Grains | Straw | Grains | Straw | Grains | Straw | |||||
CTW (–R) | 48.5c | 65.9b | 114.4c | 0.43 | 1.59b | 0.281c | 77.3c | 18.3c | 0.25 | 0.111 | 12.1c | 7.1c | 0.38 | 0.88c | 18.4d | 57.9c |
ZTW (+R) | 52.9b | 74.3ab | 127.2b | 0.42 | 1.70a | 0.35ab | 89.8b | 25.7ab | 0.28 | 0.151 | 14.9b | 11.2ab | 0.41 | 0.99b | 21.5b | 73.2ab |
C TW (+R) | 52.7b | 71.8ab | 125.4b | 0.42 | 1.69a | 0.33abc | 89.0b | 23.6b | 0.28 | 0.135 | 14.7b | 9.6b | 0.40 | 0.96b | 20.9bc | 69.2b |
Z TW (+WR) | 57.4a | 75.4a | 132.8a | 0.43 | 1.74a | 0.37a | 99.8a | 27.7a | 0.30 | 0.160 | 17.4a | 12.1a | 0.42 | 1.06a | 24.1a | 79.8a |
ZTW (RB) | 51.8bc | 72.7ab | 124.5b | 0.42 | 1.63b | 0.30bc | 84.3bc | 21.9b | 0.26 | 0.124 | 13.4bc | 9.0bc | 0.38 | 0.91c | 19.5c | 65.9b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.K.; Hans, H.; Kalia, A.; Kang, J.S.; Kaur, J.; Sraw, P.K.; Singh, A.; Alataway, A.; Dewidar, A.Z.; Mattar, M.A. Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System. Agriculture 2022, 12, 1733. https://doi.org/10.3390/agriculture12101733
Gupta RK, Hans H, Kalia A, Kang JS, Kaur J, Sraw PK, Singh A, Alataway A, Dewidar AZ, Mattar MA. Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System. Agriculture. 2022; 12(10):1733. https://doi.org/10.3390/agriculture12101733
Chicago/Turabian StyleGupta, Rajeev Kumar, Hitesh Hans, Anu Kalia, Jasjit Singh Kang, Jagroop Kaur, Paramjit Kaur Sraw, Anmol Singh, Abed Alataway, Ahmed Z. Dewidar, and Mohamed A. Mattar. 2022. "Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System" Agriculture 12, no. 10: 1733. https://doi.org/10.3390/agriculture12101733
APA StyleGupta, R. K., Hans, H., Kalia, A., Kang, J. S., Kaur, J., Sraw, P. K., Singh, A., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2022). Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System. Agriculture, 12(10), 1733. https://doi.org/10.3390/agriculture12101733