Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region
Abstract
:1. Introduction
- biodiesel undergoes almost complete biological decay: in the soil or in water, microorganisms recycle 99% of biodiesel in 28 days;
- less CO2 emissions;
- low number of components in exhaust gases, such as carbon monoxide (CO), unburned hydrocarbons and soot;
- low sulfur content;
2. Materials and Methods
3. Results and Discussion
- crops with minimum concentrations of polyunsaturated fatty acids, such as linoleic acid (18:3);
- crops with maximum concentrations of monounsaturated fatty acids, such as oleic acid (18:1), to ensure stability in combination with convenience of use in winter;
- engine power generated by blends of diesel and biofuel in different proportions is sufficiently close to the engine power generated by diesel fuel, is within tolerance limits, and differences are insignificant. A slight increase in engine power for 50% biofuel blend is due to high kinematic viscosity of blends, which reduces leakage in plunger pairs;
- fuel consumption rate for engines running on diesel–biofuel blend is higher than for diesel fuel due to the lower calorific value of biofuel.
- excess power churn can be used for squeezing oil for other purposes;
- improvement of soil fertility and phytosanitary situation;
- obtaining an additional amount (29.3 tons) of high-protein feed for dairy cattle (rapeseed cake). Rapeseed cake has a higher feed value (protein content up to 40% versus 32–34% in sunflower). Currently, the sale price of oilcake is EUR 125–150, i.e., the farm may receive additional income in the amount of EUR 3.66 thousand.
- the first scenario allows for optimization of the level of government support considering the levels of agricultural production for the i-th crop to provide farms of the region;
- the second scenario allows for the determination of the maximum profit from the biofuel production through increased agriculturally used areas;
- the third scenario allows for the calculation of the minimum expenses of achieving the volume of production that provides the farm with raw materials.
- preferential tax, loan and financing systems for producers accumulate funds of EUR 5.29 million;
- development of biofuel production—EUR 4.63 million;
- crop insurance—EUR 1.98 million;
- development of information consulting service and technical equipment—EUR 1.044 million;
- other targets—EUR 0.28 million.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Ren. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Canakci, M.; Sanli, H. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol. 2008, 35, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Knothe, G.; Razon, L.F. Biodiesel fuels. Prog. Energy Combust. Sci. 2017, 58, 36–59. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lin, H.-A.; Hung, L.-B. Fuel structure and properties of biodiesel produced by the peroxidation process. Fuel 2006, 85, 1743–1749. [Google Scholar] [CrossRef]
- Anuar, M.R.; Abdullah, A.Z. Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review. Ren. Sustain. Energy Rev. 2016, 58, 208–223. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Ren. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Borugadda, V.B.; Goud, V.V. Biodiesel production from renewable feedstocks: Status and opportunities. Ren. Sustain. Energy Rev. 2012, 16, 4763–4784. [Google Scholar] [CrossRef]
- Ullah, F.; Dong, L.; Bano, A.; Peng, Q.; Huang, J. Current advances in catalysis toward sustainable biodiesel production. J. Energy Inst. 2016, 89, 282–292. [Google Scholar] [CrossRef]
- Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D. Opportunities and challenges for biodiesel fuel. Appl. Energy 2011, 88, 1020–1031. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinzadeh-Bandbafha, H.; Shahbeik, H.; Tabatabaei, M. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res. J. 2022, 9, 1697–1706. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L.; Burlankov, P.; Ponomareva, L.; Ponomarev, E. Use of biodiesel in Russian agricultural production. E3S Web Conf. 2020, 164, 06031. [Google Scholar] [CrossRef]
- Ferrero, G.O.; Rojas, H.J.; Argaraña, C.E.; Eimer, G.A. Towards sustainable biofuel production: Design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol. J. Clean. Prod. 2016, 139, 495–503. [Google Scholar] [CrossRef]
- Lima, M.V.G.; Pires, A.J.V.; da Silva, F.F.; Teixeira, F.A.; de Carvalho Silva Castro Nogueira, B.R.; Rocha, L.C.; da Silva, G.P.; Andrade, W.R.; de Carvalho, G.G.P. Intake, digestibility, milk yield and composition, and ingestive behavior of cows supplemented with byproducts from biodiesel industry. Trop. Anim. Health Prod. 2021, 53, 169. [Google Scholar] [CrossRef]
- Chuah, L.F.; Klemeš, J.J.; Yusup, S.; Bokhari, A.; Akbar, M.M. A review of cleaner intensification technologies in biodiesel production. J. Clean. Prod. 2017, 146, 181–193. [Google Scholar] [CrossRef]
- Goldemberg, J. How much could biomass contribute to reaching the Paris Agreement goals? Biofuels Bioprod. Biorefining 2017, 11, 237–238. [Google Scholar] [CrossRef]
- Hajjari, M.; Tabatabaei, M.; Aghbashlo, M.; Ghanavati, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Ren. Sustain. Energy Rev. 2017, 72, 445–464. [Google Scholar] [CrossRef]
- Chen, H.; Xie, B.; Ma, J.; Chen, Y. NOx emission of biodiesel compared to diesel: Higher or lower? Appl. Therm. Eng. 2018, 137, 584–593. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, H.Y.; Yoon, S.K.; Choi, N.J. Reducing volatile organic compound emissions from diesel engines using canola oil biodiesel fuel and blends. Fuel 2018, 218, 266–274. [Google Scholar] [CrossRef]
- Maddikeri, G.L.; Pandit, A.B.; Gogate, P.R. Intensification approaches for biodiesel synthesis from waste cooking oil: A review. Ind. Eng. Chem. Res. 2012, 51, 14610–14628. [Google Scholar] [CrossRef]
- Mirhashemi, F.S.; Sadrnia, H. NOX emissions of compression ignition engines fueled with various biodiesel blends: A review. J. Energy Inst. 2020, 93, 129–151. [Google Scholar] [CrossRef]
- Jegannathan, K.R.; Eng-Seng, C.; Ravindra, P. Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes. Ren. Sustain. Energy Rev. 2011, 15, 745–751. [Google Scholar] [CrossRef]
- Naveenkumar, R.; Baskar, G. Optimization and techno-economic analysis of biodiesel production from Calophyllum inophyllum oil using heterogeneous nanocatalyst. Bioresour. Technol. 2020, 315, 123852. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.N.; Tišma, M.; Budžaki, S.; McMurchie, E.J.; Gonzalez, O.M.M.; Hessel, V.; Ngothai, Y. Scale-up and economic analysis of biodiesel production from recycled grease trap waste. Appl. Energy 2018, 229, 142–150. [Google Scholar] [CrossRef]
- Gholami, A.; Pourfayaz, F.; Maleki, A. Techno-economic assessment of biodiesel production from canola oil through ultrasonic cavitation. Energy Rep. 2021, 7, 266–277. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L.; Zhenzhebir, V.; Rubtsova, S. The agricultural crops production profitability in modern conditions. E3S Web Conf. 2020, 175, 13008. [Google Scholar] [CrossRef]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Ren. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L.; Panchenko, V.; Zueva, E.; Vorob’eva, D. Modelling of state support for biodiesel production. E3S Web Conf. 2020, 203, 05022. [Google Scholar] [CrossRef]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef]
- Lee, S.; Posarac, D.; Ellis, N. Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 2011, 89, 2626–2642. [Google Scholar] [CrossRef]
- Alaei, S.; Haghighi, M.; Toghiani, J.; Rahmani Vahid, B. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Ind. Crops Prod. 2018, 117, 322–332. [Google Scholar] [CrossRef]
- Lee, A.F.; Wilson, K. Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal. Today 2015, 242, 3–18. [Google Scholar] [CrossRef]
- Ajibola, O.O.; Eniyemo, S.E.; Fasina, O.O.; Adeeko, K.A. Mechanical expression of oil from melon seeds. J. Agric. Eng. Res. 1990, 45, 45–53. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Shi, Y.; Yuan, H.; Shi, J. Catalysts from renewable resources for biodiesel production. Energy Convers. Manag. 2018, 178, 277–289. [Google Scholar] [CrossRef]
- Fang, Q.; Fang, J.; Zhuang, J.; Huang, Z. Effects of ethanol-diesel-biodiesel blends on combustion and emissions in premixed low temperature combustion. Appl. Therm. Eng. 2013, 54, 541–548. [Google Scholar] [CrossRef]
- Krisnangkura, K. A simple method for estimation of cetane index of vegetable oil methyl esters. J. Am. Oil Chem. Soc. 1986, 63, 552–553. [Google Scholar] [CrossRef]
- Gumus, M.; Kasifoglu, S. Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass Bioenergy 2010, 34, 134–139. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Shahabuddin, M.; Palash, S.M.; Hazrat, M.A. Effect of biodiesel from various feedstocks on combustion characteristics engine durability and materials compatibility: A review. Ren. Sustain. Energy Rev. 2013, 28, 441–455. [Google Scholar] [CrossRef]
- Wan Ghazali, W.N.M.; Mamat, R.; Masjuki, H.H.; Najafi, G. Effects of biodiesel from different feedstocks on engine performance and emissions: A review. Ren. Sustain. Energy Rev. 2015, 51, 585–602. [Google Scholar] [CrossRef]
- Calder, J.; Roy, M.M.; Wang, W. Performance and emissions of a diesel engine fueled by biodiesel-diesel blends with recycled expanded polystyrene and fuel stabilizing additive. Energy 2018, 149, 204–212. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N. Production of biodiesel using high free fatty acid feedstocks. Ren. Sustain. Energy Rev. 2012, 16, 3275–3285. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Ren. Sustain. Energy Rev. 2016, 57, 799–821. [Google Scholar] [CrossRef]
- Ghadikolaei, M.A.; Cheung, C.S.; Yung, K.-F. Study of combustion, performance and emissions of a diesel engine fueled with ternary fuel in blended and fumigation modes. Fuel 2019, 235, 288–300. [Google Scholar] [CrossRef]
- Ishak, S.; Kamari, A. A review of optimum conditions of transesterification process for biodiesel production from various feedstocks. Int. J. Environ. Sci. Technol. 2019, 16, 2481–2502. [Google Scholar] [CrossRef]
- Prasertsit, K.; Phoosakul, P.; Sukmanee, S. Use of calcium oxide in palm oil methyl ester production. Songklanakarin J. Sci. Technol. 2014, 36, 195–200. [Google Scholar]
- Fukuda, H.; Kondo, A.; Noda, H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng. 2001, 92, 405–416. [Google Scholar] [CrossRef]
- Kouzu, M.; Hidaka, J.-S.; Komichi, Y.; Nakano, H.; Yamamoto, M. A process to transesterify vegetable oil with methanol in the presence of quick lime bit functioning as solid base catalyst. Fuel 2009, 88, 1983–1990. [Google Scholar] [CrossRef]
- Venkateswarulu, T.C.; Raviteja, C.V.; Prabhaker, K.V.; Babu, D.J.; Ranganadha Reddy, A.; Indira, M.; Venkatanarayana, A. Review on methods of transesterification of oils and fats in bio-diesel formation. Int. J. ChemTech Res. 2014, 6, 2568–2576. [Google Scholar]
- Marchetti, J.M.; Errazu, A.F. Technoeconomic study of supercritical biodiesel production plant. Energy Convers. Manag. 2008, 49, 2160–2164. [Google Scholar] [CrossRef]
- Lee, J.-C.; Lee, B.; Heo, J.; Kim, H.-W.; Lim, H. Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion. Bioresour. Technol. 2019, 294, 122173. [Google Scholar] [CrossRef] [PubMed]
- Sakdasri, W.; Sawangkeaw, R.; Ngamprasertsith, S. Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio. Energy 2018, 152, 144–153. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 2003, 90, 229–240. [Google Scholar] [CrossRef]
- Silva Filho, S.C.D.; Miranda, A.C.; Silva, T.A.F.; Calarge, F.A.; Souza, R.R.D.; Santana, J.C.C.; Tambourgi, E.B. Environmental and techno-economic considerations on biodiesel production from waste frying oil in São Paulo city. J. Clean. Prod. 2018, 183, 1034–1042. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L.; Kuznecova, E.; Poletaeva, L. Economic aspects of the biodiesel use in agricultural production. E3S Web Conf. 2020, 164, 09026. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol. 2008, 89, 740–748. [Google Scholar] [CrossRef]
- Tasić, M.B.; Stamenković, O.S.; Veljković, V.B. Cost analysis of simulated base-catalyzed biodiesel production processes. Energy Convers. Manag. 2014, 84, 405–413. [Google Scholar] [CrossRef]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef]
- Zhichkin, K.; Nosov, V.; Zhichkina, L. Economic mechanism of the machine-tractor park updating in the Samara region. IOP Conf. Ser. Earth Environ. Sci. 2019, 403, 012073. [Google Scholar] [CrossRef]
- Sakai, T.; Kawashima, A.; Koshikawa, T. Economic assessment of batch biodiesel production processes using homogeneous and heterogeneous alkali catalysts. Bioresour. Technol. 2009, 100, 3268–3276. [Google Scholar] [CrossRef]
- Issariyakul, T.; Dalai, A.K. Biodiesel from vegetable oils. Ren. Sustain. Energy Rev. 2014, 31, 446–471. [Google Scholar] [CrossRef]
- Van Gerpen, J.; Knothe, G. Bioenergy and Biofuels from Soybeans. Soybeans Chem. Prod. Process. Util. 2008, 16, 499–538. [Google Scholar] [CrossRef]
- Okwundu, O.S.; Chiama, C.J.; Chiama, C.J.; Ucheagwu, P.C.; Uzoma, E.K.; Okaro, C.A.; Muojama, O.E. The untapped industrial crop, Cucumeropsis mannii: Dry oil extraction, characterization and potential use as biodiesel feedstock and heavy metal sink. Sustain. Environ. Res. 2021, 31, 10. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Liang, J.; Yang, C. The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Rep. 2021, 7, 1016–1024. [Google Scholar] [CrossRef]
- Poddar, T.; Jagannath, A.; Almansoori, A. Use of reactive distillation in biodiesel production: A simulation-based comparison of energy requirements and profitability indicators. Appl. Energy 2017, 185, 985–997. [Google Scholar] [CrossRef]
- Souza, T.P.C.; Stragevitch, L.; Knoechelmann, A.; Pacheco, J.G.A.; Silva, J.M.F. Simulation and preliminary economic assessment of a biodiesel plant and comparison with reactive distillation. Fuel Process. Technol. 2014, 123, 75–81. [Google Scholar] [CrossRef]
- Ambat, I.; Srivastava, V.; Sillanpää, M. Recent advancement in biodiesel production methodologies using various feedstock: A review. Ren. Sustain. Energy Rev. 2018, 90, 356–369. [Google Scholar] [CrossRef]
- Borges, M.E.; Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Ren. Sustain. Energy Rev. 2012, 16, 2839–2849. [Google Scholar] [CrossRef]
- Reetz, M.T. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J. Am. Chem. Soc. 2013, 135, 12480–12496. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Possible methods for biodiesel production. Ren. Sustain. Energy Rev. 2007, 11, 1300–1311. [Google Scholar] [CrossRef]
- Philip, J.F.; Sudalai, S.; Devanesan, M.G.; Babazadeh, R.; Arumugam, A. Environmental sustainability, technoeconomic analysis, and policy-making aspects of biodiesel. Prod. Biodiesel Non-Edible Sources Technol. Updates 2022, 7, 211–239. [Google Scholar] [CrossRef]
- Atmanli, A. Effects of a cetane improver on fuel properties and engine characteristics of a diesel engine fueled with the blends of diesel, hazelnut oil and higher carbon alcohol. Fuel 2016, 172, 209–217. [Google Scholar] [CrossRef]
- Labeckas, G.; Slavinskas, S. The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions. Energy Convers. Manag. 2006, 47, 1954–1967. [Google Scholar] [CrossRef]
- Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F.; Ikhu-Omoregbe, D.I.O. A review of current technology for biodiesel production: State of the art. Biomass Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Baskar, G.; Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Ren. Sustain. Energy Rev. 2016, 57, 496–504. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Méndez Díaz, J.D.; Sánchez Polo, M.; Rivera Utrilla, J. Biodiesel production using calcium manganese oxide as catalyst and different raw materials. Energy Convers. Manag. 2013, 65, 647–653. [Google Scholar] [CrossRef]
- Ferrero, G.O.; Faba, E.M.S.; Eimer, G.A. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicified enzyme as biocatalyst. Biotechnol. Biofuels 2021, 14, 67. [Google Scholar] [CrossRef]
- Luque, R.; Campelo, J.M.; Clark, J.H. Introduction: An overview of biofuels and production technologies. Handb. Biofuels Prod. Process. Technol. 2011, 1, 3–12. [Google Scholar] [CrossRef]
- Sánchez Faba, E.M.; Ferrero, G.O.; Dias, J.M.; Eimer, G.A. Alternative raw materials to produce biodiesel through alkaline heterogeneous catalysis. Catalysts 2019, 9, 690. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, N.N.A.N.; Kamarudin, S.K. Techno-economic analysis of biodiesel production from Jatropha curcas via a supercritical methanol process. Energy Convers. Manag. 2013, 75, 710–717. [Google Scholar] [CrossRef]
- Thompson, W.; Whistance, J.; Meyer, S. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energy Policy 2011, 39, 5509–5518. [Google Scholar] [CrossRef]
- Goldemberg, S.; Coelho, S.T.; Lucon, O. How adequate policies can push renrewables. Energy Policy 2004, 32, 1141–1146. [Google Scholar] [CrossRef]
- Abdullah, B.; Syed Muhammad, S.A.F.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Ren. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
Crop | Kilograms of Oil per ha (kg/ha) | Liters of Oil per ha (L/ha) |
---|---|---|
Corn | 145 | 172 |
Oat | 183 | 217 |
Lupine | 195 | 232 |
Soybean | 375 | 446 |
Flax seeds | 402 | 478 |
Pumpkin seeds | 449 | 534 |
Mustard seeds | 481 | 572 |
Milk-cap | 490 | 583 |
Sunflower | 800 | 952 |
Rapeseed | 1000 | 1190 |
Oil | Tpl, °C | Cetane Number |
---|---|---|
Rapeseed or soybean | −10 | 55–58 |
Sunflower | −12 | 52 |
Corn | −10 | 53 |
Area | Total Crop Acreage | Grain and Leguminous Crops | Industrial Crops | Potato and Cucurbits | Forage Crops |
---|---|---|---|---|---|
Northern zone | 25 | 57.12 | 26.61 | 0.05 | 16.22 |
Central zone | 32 | 53.95 | 28 | 0.58 | 17.47 |
Southern zone | 43 | 56.4 | 34.13 | 0.64 | 8.83 |
Region | 100 | 55.81 | 30.29 | 0.47 | 13.43 |
Crops | Material Costs of Petroleum Products per ha, Thousand EUR | ||
---|---|---|---|
Northern Zone | Central Zone | Southern Zone | |
Grain and leguminous crops—total | 1.49 | 1.19 | 1.79 |
Grain and leguminous crops (winter and spring) excluding corn | 1.66 | 1.19 | 1.71 |
including: winter grains | 1.93 | 1.36 | 1.99 |
spring grains | 1.34 | 1.18 | 1.34 |
grain legumes | 1.24 | - | 1.72 |
Grain corn | 1.30 | 1.03 | 2.20 |
Industrial crops—total | 1.84 | 3.58 | 1.89 |
Soybean | 1.66 | - | - |
Milk-cap | - | - | 1.68 |
Common flax (cultivation) | - | - | - |
Grain sunflower | 2.02 | 3.58 | 2.11 |
Potato and cucurbits—total | 1.30 | 1.76 | 1.34 |
Forage crops—total | 0.83 | 0.76 | 0.66 |
Perennial grass | 1.06 | 0.30 | 0.34 |
Annual grass | 0.53 | 0.88 | 0.69 |
Silage corn and green corn | 0.90 | 1.09 | 0.95 |
Region | Total Material Costs of Petroleum Products, Thousand EUR | Grain and Leguminous Crops | Industrial Crops | Potato and Cucurbits | Forage Crops |
---|---|---|---|---|---|
Samara | 28,460.72 | 14,453.90 | 12,170.57 | 127.56 | 1708.66 |
Region | Petroleum Products, Tons | Grain and Leguminous Crops | Industrial Crops | Potato and Cucurbits | Forage Crops |
---|---|---|---|---|---|
Samara | 77,062.9 | 39,136.8 | 32,954.2 | 345.4 | 4626.7 |
№ | Indicator | Natural Indicator | Cost, Thousand EUR |
---|---|---|---|
1 | Rapeseed yield | 1.5 t/ha | |
2 | The cost of capital investments (reconstruction of premises and purchase of technological equipment) | 29.20 | |
3 | Cost of components, total | 1 t | 0.18 |
including rapeseed oil | 885 kg | 0.16 | |
methanol | 100 kg | 0.01 | |
potassium hydroxide | 15 kg | 0.01 | |
4 | Depreciation | 2.92 | |
5 | Salary | 2 men | 5.25 |
6 | Electric power | 11,088 KWh | 0.62 |
7 | Repair and maintenance costs | 0.73 | |
8 | General running costs | 13.33 | |
9 | Total production costs per year | 66.63 | |
10 | The cost of rapeseed oil biodiesel | 1 t | 0.31 |
For comparison (as of 1 August 2018): | |||
11 | The price of summer diesel fuel average for Russia | 1 t | 0.42 |
12 | Gas station price | 1000 l | more 0.40 |
Crop | September | April | May | June | July | August | September |
---|---|---|---|---|---|---|---|
Winter wheat | 0.00 | 4.14 | 1.27 | 1.35 | 0.17 | 3.51 | 1.58 |
Spring wheat | 0.00 | 0.77 | 0.95 | 0.00 | 0.12 | 0.00 | 1.01 |
Barley | 0.00 | 1.33 | 1.63 | 0.00 | 0.20 | 0.00 | 1.75 |
Oats | 0.00 | 0.74 | 0.91 | 0.00 | 0.11 | 0.00 | 0.70 |
Sunflower | 0.57 | 3.26 | 0.56 | 0.74 | 0.46 | 0.11 | 0.00 |
Perennial grasses | 0.00 | 0.00 | 0.24 | 0.00 | 4.54 | 0.00 | 0.00 |
Annual grasses | 2.16 | 0.00 | 1.77 | 0.00 | 0.00 | 5.21 | 0.00 |
Silage Corn | 4.80 | 0.00 | 0.60 | 2.80 | 0.67 | 0.51 | 0.00 |
Rape | 0.93 | 2.64 | 0.68 | 0.97 | 0.14 | 0.00 | 0.82 |
TOTAL | 8.46 | 12.89 | 8.61 | 5.85 | 6.42 | 9.34 | 5.86 |
Rapeseed Cultivation Technologies Based on: | ||
---|---|---|
Plowing | Shallow Loosening | “Zero” Tillage and Direct Seeding |
1. Peeling 4–6 cm after harvesting the predecessor | 1. Peeling 4–6 cm after harvesting the predecessor | Without autumn tillage |
2. Application of complex mineral fertilizers randomly 1.5 c/ha diammofoska | 2. Application of complex mineral fertilizers randomly 1.5 c/ha diammofoska | |
3. Plowing by 25–27 cm with regrowth of weeds and fall of the predecessor | 3. Loosening by 10–12 cm during the growth of weeds and fall of the predecessor | 1. Application of the herbicide Hurricane 2 L/ha during the regrowth of perennial weeds and fall of the predecessor |
4. Spring harrowing | 4. Spring harrowing | Without spring tillage |
5. Presowing cultivation by 3–4 cm | 5. Presowing cultivation by 3–4 cm | |
6. Sowing with a SZ-5.4 seeder with the simultaneous introduction of 0.6 c/ha of ammonium nitrate | 6. Sowing with a SZ-5.4 seeder with the simultaneous introduction of 0.6 c/ha of ammonium nitrate | 2. Sowing with the Amazone DMC seeder with the simultaneous introduction of 1.5 c/ha of Diammofoska and 0.6 c/ha of ammonium nitrate |
7. Rolling after sowing | 7. Rolling after sowing | 3. Rolling after sowing |
8. Spraying with tank mix herbicide + insecticide + biostimulator | 8. Spraying with tank mix herbicide + insecticide + biostimulator | 4. Spraying with tank mix herbicide + insecticide + biostimulator |
9. The introduction of ammonium sulfate by scattering into the feed 2.2 cwt/ha | 9. The introduction of ammonium sulfate by scattering into the feed 2.2 cwt/ha | 5. The introduction of ammonium sulfate by scattering into the feed 2.2 cwt/ha |
10. Spraying with a tank mixture insecticide + biostimulator | 10. Spraying with a tank mixture insecticide + biostimulator | 6. Spraying with a tank mixture insecticide + biostimulator |
11. Mowing into rolls | 11. Mowing into rolls | 7. Mowing into rolls |
12. Selection and threshing of rolls | 12. Selection and threshing of rolls | 8. Selection and threshing of rolls |
13. Oilseed transportation | 13. Oilseed transportation | 9. Oilseed transportation |
14. Primary cleaning of oilseeds | 14. Primary cleaning of oilseeds | 10. Primary cleaning of oilseeds |
Indicators | Using Plowing | Shallow Moldless Processing | Direct Seeding | |||
---|---|---|---|---|---|---|
Without the Use of Fertilizers | N81P38K38 | Without the Use of Fertilizers | N81P38K38 | Without the Use of Fertilizers | N81P38K38 | |
Seeds, EUR/ha | 11.76 | 11.76 | 11.76 | 11.76 | 11.76 | 11.76 |
Fertilizers, EUR/ha | 0.00 | 36.41 | 0.00 | 35.61 | 0.00 | 36.41 |
Plant protection products, EUR/ha | 5.59 | 5.59 | 5.89 | 5.89 | 12.25 | 12.25 |
Fuels and lubricants, EUR/ha | 48.53 | 49.67 | 32.39 | 33.52 | 17.39 | 17.95 |
Repair of equipment, EUR/ha | 2.05 | 2.09 | 1.85 | 1.91 | 1.74 | 1.78 |
Road transport, EUR/ha | 0.32 | 0.44 | 0.23 | 0.41 | 0.20 | 0.48 |
Electricity, EUR/ha | 0.16 | 0.23 | 0.13 | 0.22 | 0.10 | 0.25 |
Wages, EUR/ha | 8.44 | 8.80 | 7.69 | 8.07 | 5.20 | 5.59 |
Total: variable costs, EUR/ha | 76.85 | 114.99 | 59.93 | 97.39 | 48.65 | 86.48 |
Depreciation deductions, EUR/ha | 20.48 | 20.92 | 18.52 | 19.03 | 17.35 | 17.83 |
Total: fixed costs, EUR/ha | 20.48 | 20.92 | 18.52 | 19.03 | 17.35 | 17.83 |
Total cost, EUR/ha | 97.33 | 135.91 | 78.45 | 116.42 | 66.00 | 104.31 |
Total revenue, EUR/ha | 137.93 | 168.82 | 92.78 | 144.94 | 70.73 | 153.88 |
Profit, EUR/ha | 40.60 | 32.91 | 14.33 | 22.95 | 3.90 | 44.16 |
Profitability, % | 41.72 | 24.21 | 18.27 | 19.72 | 5.91 | 42.34 |
Cost of 1 ton, EUR | 59.40 | 68.30 | 78.88 | 63.80 | 80.07 | 61.35 |
Indicators | Rape | Sunflower | False flax | Mustard | Pumpkin | Flax | Soy |
---|---|---|---|---|---|---|---|
Seeds, EUR/ha | 11.76 | 6.84 | 0.82 | 16.36 | 2.25 | 85.23 | 42.95 |
Fertilizers, EUR/ha | 36.41 | 26.70 | 7.43 | 2.67 | 1.74 | 8.55 | 30.51 |
Plant protection products, EUR/ha | 12.25 | 2.80 | 9.45 | 4.42 | 4.91 | 5.88 | 10.80 |
Fuels and lubricants, EUR/ha | 17.95 | 21.52 | 16.48 | 21.93 | 15.00 | 36.76 | 38.98 |
Repair of equipment, EUR/ha | 1.78 | 1.45 | 1.63 | 1.86 | 1.31 | 1.98 | 2.24 |
Road transport, EUR/ha | 0.48 | 0.40 | 0.17 | 0.42 | 0.20 | 0.40 | 0.51 |
Electricity, EUR/ha | 0.25 | 0.20 | 0.08 | 0.17 | 0.07 | 0.22 | 0.28 |
Wages, EUR/ha | 5.59 | 8.66 | 4.77 | 8.57 | 10.68 | 8.57 | 8.80 |
Total: variable costs, EUR/ha | 86.48 | 68.58 | 40.83 | 56.41 | 36.16 | 147.57 | 135.07 |
Depreciation deductions, EUR/ha | 17.83 | 18.64 | 16.61 | 20.98 | 15.08 | 20.40 | 21.48 |
Total: fixed costs, EUR/ha | 17.83 | 18.64 | 16.61 | 20.98 | 15.08 | 20.40 | 21.48 |
Total cost, EUR/ha | 104.31 | 87.22 | 57.44 | 77.39 | 51.24 | 167.97 | 156.55 |
Total revenue, EUR/ha | 160.76 | 123.56 | 74.68 | 102.25 | 62.22 | 226.01 | 208.69 |
Profit, EUR/ha | 56.45 | 36.34 | 17.24 | 24.86 | 10.98 | 58.05 | 52.15 |
Profitability, % | 54.1 | 41.7 | 30.0 | 32.1 | 21.4 | 34.6 | 33.3 |
Cost of 1 ton, EUR | 61.15 | 124.13 | 92.36 | 70.45 | 136.41 | 103.10 | 78.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhichkin, K.A.; Nosov, V.V.; Zhichkina, L.N.; Krasil’nikova, E.A.; Kotar, O.K.; Shlenov, Y.D.; Korneva, G.V.; Terekhova, A.A.; Plyushchikov, V.G.; Avdotin, V.P.; et al. Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region. Agriculture 2022, 12, 1734. https://doi.org/10.3390/agriculture12101734
Zhichkin KA, Nosov VV, Zhichkina LN, Krasil’nikova EA, Kotar OK, Shlenov YD, Korneva GV, Terekhova AA, Plyushchikov VG, Avdotin VP, et al. Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region. Agriculture. 2022; 12(10):1734. https://doi.org/10.3390/agriculture12101734
Chicago/Turabian StyleZhichkin, Kirill A., Vladimir V. Nosov, Lyudmila N. Zhichkina, Elena A. Krasil’nikova, Olga K. Kotar, Yuri D. Shlenov, Galina V. Korneva, Anna A. Terekhova, Vadim G. Plyushchikov, Vladimir P. Avdotin, and et al. 2022. "Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region" Agriculture 12, no. 10: 1734. https://doi.org/10.3390/agriculture12101734
APA StyleZhichkin, K. A., Nosov, V. V., Zhichkina, L. N., Krasil’nikova, E. A., Kotar, O. K., Shlenov, Y. D., Korneva, G. V., Terekhova, A. A., Plyushchikov, V. G., Avdotin, V. P., Gurina, R. R., & Magdeeva, T. V. (2022). Agronomic and Economic Aspects of Biodiesel Production from Oilseeds: A Case Study in Russia, Middle Volga Region. Agriculture, 12(10), 1734. https://doi.org/10.3390/agriculture12101734