Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Pretreatment Methods
2.3. Hot-Air Drying Experiment
2.4. Moisture Ratio (MR)
2.5. Three-Dimensional Appearance Evaluation Index
2.5.1. Shrinkage
2.5.2. Height Standard Deviation
2.6. Color Measurement
2.7. Determination of Total Polyphenol Content (TPC)
2.8. Determination of DPPH Radical Scavenging Assay
2.9. Microstructure
2.10. Statistical Analysis
3. Results and Discussion
3.1. Moisture Ratio (MR)
3.2. Three-Dimensional Appearance Characterization
3.3. Shrinkage
3.4. Height Standard Deviation (HSD)
3.5. Color
3.6. Total Polyphenol Content (TPC)
3.7. DPPH Radical Scavenging Assay
3.8. Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, X.; Hu, Q.; Zhu, A. Model and character of hot air convection drying of potato slice. Cereals Oils 2018, 31, 52–55. [Google Scholar]
- Huang, Q.; Shu, T.; Liu, X.; Ouyang, M.; Zheng, M. Overview of the nutritional value of potato. Mod. Food 2018, 16, 58–59. [Google Scholar]
- Wang, R.; Zhang, M.; Mujumdar, A.S. Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Dry. Technol. 2010, 28, 798–806. [Google Scholar] [CrossRef]
- Delaplace, P.; Brostaux, Y.; Fauconnier, M.L.; du Jardin, P. Potato (Solanum tuberosum L.) tuber physiological age index is a valid reference frame in postharvest ageing studies. Postharvest Biol. Technol. 2008, 50, 103–106. [Google Scholar] [CrossRef]
- Sonnewald, S.; Sonnewald, U. Regulation of potato tuber sprouting. Planta 2014, 239, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Hii, C.L.; Ong, S.P.; Vap, J.Y.; Putranto, A.; Mangindaan, D. Hybrid drying of food and bioproducts: A review. Dry. Technol. 2021, 39, 1554–1579. [Google Scholar] [CrossRef]
- Putranto, A.; Chen, X.D. Reaction engineering approach modeling of intensified drying of fruits and vegetables using microwave, ultrasonic and infrared-heating. Dry. Technol. 2020, 38, 747–757. [Google Scholar] [CrossRef]
- Albosharib, D.; Noshad, M.; Jooyandeh, H.; Dizaji, H.Z. Effect of freezing and radiofrequency pretreatments on quality. J. Food Process. Preserv. 2021, 45, e16062. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Stępień, B.; Łyczko, J.; Pasławska, M.; Musiałowska, J. Influence of drying methods and vacuum impregnation on selected quality factors of dried sweet potato. Agriculture 2021, 11, 858. [Google Scholar] [CrossRef]
- Djebli, A.; Hanini, S.; Badaoui, O.; Haddad, B.; Benhamou, A. Modeling and comparative analysis of solar drying behavior of potatoes. Renew. Energy 2020, 145, 1494–1506. [Google Scholar] [CrossRef]
- Farias, R.P.; Gomez, R.S.; Sliva, W.P.; Sliva, L.P.L.; Neto, G.L.O.; Santos, I.B.; Carmo, J.E.F.; Nascimento, J.J.S.; Lima, A.G.B. Heat and mass transfer, and volume variations in banana slices during convective hot air drying: An experimental analysis. Agriculture 2020, 10, 423. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Yang, W.X.; Zhang, Q.; Zheng, Z.A.; Wu, M.; Xiao, H.W. Hot air impingement drying kinetics and quality attributes of orange peel. J. Food Process. Preserv. 2019, 44, e14294. [Google Scholar] [CrossRef]
- Ando, Y.; Maeda, Y.; Mizutani, K.; Wakatsuki, N.; Hagiwara, S.; Nabetani, H. Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT 2016, 71, 40–46. [Google Scholar] [CrossRef]
- Mehta, D.; Prasad, P.; Bansal, V.; Sissiqul, M.W.; Sharma, A. Effect of drying techniques and treatment with blanching on the physicochemical analysis of bitter-gourd and capsicum. LWT 2017, 84, 479–488. [Google Scholar] [CrossRef]
- Liu, P.; Mujumdar, A.S.; Zhang, M.; Jiang, H. Comparison of Three Blanching Treatments on the Color and Anthocyanin Level of the Microwave-Assisted Spouted Bed Drying of Purple Flesh Sweet Potato. Dry. Technol. 2015, 33, 66–71. [Google Scholar] [CrossRef]
- Gomide, A.I.; Monteiro, R.L.; Carciofi, B.A.M.; Laurindo, J.B. The Effect of Pretreatments on the Physical Properties and Starch Structure of Potato Chips Dried by Microwaves under Vacuum. Foods 2022, 11, 2259. [Google Scholar] [CrossRef]
- Sharma, P.R.; Varma, A.J. Thermal stability of cellulose and their nanoparticles: Effect of incremental increases in carboxyl and aldehyde groups. Carbohydr. Polym. 2014, 114, 339–343. [Google Scholar] [CrossRef]
- Zou, K.; Teng, J.; Huang, L.; Dai, X.; Wei, B. Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT Food Sci. Technol. 2013, 51, 253–259. [Google Scholar] [CrossRef]
- Dehghannya, J.; Bozorghi, S.; Heshmati, M.K. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: Drying kinetics, energy consumption and product quality indexes. Heat Mass Transf. 2018, 54, 929–954. [Google Scholar] [CrossRef]
- Chinenye, N.M.; Onyenwigwe, D.I.; Abam, F.; Lamrani, B.; Simo-Tagne, M.; Bekkioui, N.; Bennamoun, L.; Said, Z. Influence of hot water blanching and saline immersion period on the thermal effusivity and the drying kinetics of hybrid solar drying of sweet potato chips. Sol. Energy 2022, 240, 176–192. [Google Scholar] [CrossRef]
- Pei, Y.; Li, Z.; Xu, W.; Song, C.; Li, J.; Song, F. Effects of ultrasound pretreatment followed by far-infrared drying on physicochemical properties, antioxidant activity and aroma compounds of saffron (Crocus sativus L.). Food Biosci. 2021, 42, 101186. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Y.; Hu, X.; Sun, X. Effect of ultrasonic power on water removal kinetics and moisture migration of kiwifruit slices during contact ultrasound intensified heat pump drying. Food Bioproc. Technol. 2020, 13, 430–441. [Google Scholar] [CrossRef]
- Jarahizadeh, H.; Dinani, S.T. Influence of applied time and power of ultrasonic pretreatment on convective drying of potato slices. Food Sci. Technol. 2019, 28, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, L.P. Effects of preliminary treatment by ultrasonic and convective air drying on the properties and oil absorption of potato chips. Ultrason. Sonochem. 2021, 74, 105548. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Feng, Y.; Yagoub, A.A.; Sun, Y.; Ma, H.; Zhou, C. Vacuum pulsation drying of okra (Abelmoschus esculentus L. Moench): Better retention of the quality characteristics by flat sweep frequency and pulsed ultrasound pretreatment. Food Chem. 2020, 326, 127026. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.T.; Ma, H.L.; Jatoi, M.A.; Hashim, M.M.; Wali, A.; Safdar, B. Influence of Ultrasonic Pretreatment with Hot Air Drying on Nutritional Quality and Structural Related Changes in Dried Sweet Potatoes. Int. J. Food Eng. 2018, 15, 20180409. [Google Scholar] [CrossRef]
- Bai, J.; Tian, X.; Liu, Y.; Xu, S.; Luo, H. Studies on Drying Characteristics and Shrinkage Kinetics Modelling of Colocasia gigantea Slices during Thin Layer Drying. J. Chin. Inst. Food Sci. Technol. 2018, 18, 124–130. [Google Scholar]
- Khzazei, N.B.; Tavakoli, T.; Ghasemian, H.; Khoshtaghaza, M.H.; Banakar, A. Applied machine vision and artificial neural network for modeling and controlling of the grape drying process. Comput. Electron. Agric. 2013, 98, 205–213. [Google Scholar]
- Sampson, D.J.; Chang, Y.K.; Rupasinghe, H.P.V.; Zaman, Q.U.Z. A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying. J. Food Eng. 2014, 127, 49–57. [Google Scholar] [CrossRef]
- Cai, J.; Lu, Y.; Bai, J.; Sun, L.; Xiao, H. Three-dimensional imaging of morphological changes of potato slices during drying. Trans. Chin. Soc. Agric. Eng. 2019, 35, 278–284. [Google Scholar]
- Wasenmüller, O.; Stricker, D. Comparison of Kinect V1 and V2 Depth Images in Terms of Accuracy and Precision. In Proceedings of the 13th Asian Conference on Computer Vision (ACCV), Taipei, Taiwan, 20–24 November 2016. [Google Scholar]
- Esturk, O. Intermittent and Continuous Microwave-Convective Air-Drying Characteristics of Sage (Salvia officinalis) Leaves. Food Bioproc. Technol. 2012, 5, 1664–1673. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, P.; Zheng, X.; Cai, J.; Bai, J. Three-dimensional morphological changes of potato slices during the drying process. Curr. Res. Food Sci. 2021, 4, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Le Cozler, Y.; Allain, C.; Caillot, A.; Delouard, J.M.; Delattre, L.; Luginbuhl, T.; Faverdin, P. High-precision scanning system for complete 3D cow body shape imaging and analysis of morphological traits. Comput. Electron. Agric. 2019, 157, 447–453. [Google Scholar] [CrossRef]
- Ruchay, A.; Kober, A.; Dorofeev, K.; Kolpakov, V.; Miroshnikov, S. Accurate body measurement of live cattle using three depth cameras and non-rigid 3-D shape recovery. Comput. Electron. Agric. 2020, 179, 105821. [Google Scholar] [CrossRef]
- Liu, K.; Xiao, X.; Wang, J.; Chen, C.O.; Hu, H. Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. LWT Food Sci. Technol. 2017, 82, 154–161. [Google Scholar] [CrossRef]
- Zhu, K.X.; Lian, C.X.; Guo, X.N.; Wei, P.; Zhou, H.M. Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chem. 2011, 126, 1122–1126. [Google Scholar] [CrossRef]
- Chu, Y.; Wei, S.; Ding, Z.; Mei, J.; Xie, J. Application of Ultrasound and Curing Agent during Osmotic Dehydration to Improve the Quality Properties of Freeze-Dried Yellow Peach (Amygdalus persica) Slices. Agriculture 2021, 11, 1069. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chattopadhyay, P.K. Whirling bed blanching of potato cubes and its effects on product quality. J. Food Eng. 2007, 78, 52–60. [Google Scholar] [CrossRef]
- Deng, L.Z.; Pan, Z.; Mujumdar, A.S.; Zhao, J.H.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 2018, 96, 104–111. [Google Scholar] [CrossRef]
- Wang, H.; Karim, M.A.; Vidyarthi, S.K.; Xie, L.; Liu, Z.L.; Gao, L.; Zhang, J.S.; Xiao, H.W. Vacuum-steam pulsed blanching (VSPB) softens texture and enhances drying rate of carrot by altering cellular structure, pectin polysaccharides and water state. Innov. Food Sci. Emerg. Technol. 2021, 74, 102801. [Google Scholar] [CrossRef]
- Lagnika, C.; Jiang, N.; Song, J.; Li, D.; Liu, C.; Huang, J.; Wei, Q.; Zhang, M. Effects of pretreatments on properties of microwave-vacuum drying of sweet potato slices. Dry. Technol. 2019, 37, 1901–1914. [Google Scholar] [CrossRef]
- Ricce, C.; Rojas, M.L.; Miano, A.C.; Siche, R.; Augusto, P.E.D. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res. Int. 2016, 89, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mujumdar, A.S.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W.; Raghavan, G.S.V. High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydr. Polym. 2018, 194, 9–17. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.L.; Nema, P.K.; Zhao, J.H.; Liu, Z.L.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Liu, H.; Jin, X.; Liu, X. Impacts of different blanching pretreatments on the quality of dried potato chips and fried potato crisps undergoing heat pump drying. Int. J. Food Eng. 2021, 17, 517–527. [Google Scholar] [CrossRef]
- Mahiuddin, M.; Rodriguez-Ramirez, J.; Khan, M.I.H.; Kumar, C.; Rahman, M.M.; Karim, M.A. Shrinkage of food materials during drying: Current status and challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fante, C.; Correa, J.; Natividade, M.; Lima, J.; Lima, L. Drying of plums (Prunus sp., c.v Gulfblaze) treated with KCl in the field and subjected to pulsed vacuum osmotic dehydration. Int. J. Food Sci. Technol. 2011, 46, 1080–1085. [Google Scholar] [CrossRef]
- Liu, Y.H.; Sun, C.Y.; Lei, Y.Q.; Yu, H.C.; Xi, H.H.; Duan, X. Contact ultrasound strengthened far-infrared radiation drying on pear slices: Effects on drying characteristics, microstructure, and quality attributes. Dry. Technol. 2019, 37, 745–758. [Google Scholar] [CrossRef]
- Rashid, M.T.; Ma, H.; Jatoi, M.A.; Wali, A.; El-Mesery, H.S.; Ali, Z.; Sarpong, F. Effect of infrared drying with multifrequency ultrasound pretreatments on the stability of phytochemical properties, antioxidant potential, and textural quality of dried sweet potatoes. J. Food Biochem. 2019, 43, e12809. [Google Scholar] [CrossRef]
- Aral, S.; Bese, A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016, 210, 577–584. [Google Scholar] [CrossRef]
- He, C.; Zhang, M.; Devahastin, S. Investigation on spontaneous shape change of 4D printed starch-based purees from purple sweet potatoes as induced by microwave dehydration. ACS Appl. Mater. Int. 2020, 12, 37896–37905. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Iglesias, J.; Sablani, S.S.; Mendez-Lagunas, L.L. Texture analysis of dried papaya (Carica papaya L., cv. Maradol) pretreated with calcium and osmotic dehydration. Dry. Technol. 2019, 37, 906–919. [Google Scholar] [CrossRef]
- Miano, A.C.; Rojas, M.L.; Augusto, P.E.D. Structural changes caused by ultrasound pretreatment: Direct and indirect demonstration in potato cylinders. Ultrason. Sonochem. 2019, 52, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Boateng, I.D.; Yang, X.M. Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box–Behnken and central composite design and evaluation: A case study. Ind. Crop. Prod. 2021, 162, 113287. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Wang, B. Effect of thermal and ultrasonic pretreatment on enzyme inactivation, color, phenolics and flavonoids contents of infrared freeze-dried rose flower. J. Food Meas. Charact. 2021, 15, 995–1004. [Google Scholar] [CrossRef]
- Xiao, H.W.; Lin, H.; Yao, X.D.; Du, Z.L.; Lou, Z.; Gao, Z.J. Effects of Different Pretreatments on Drying Kinetics and Quality of Sweet Potato Bars Undergoing Air Impingement Drying. Int. J. Food Eng. 2009, 5, 5. [Google Scholar] [CrossRef]
- Pimpaporn, P.; Devahastin, S.; Chiewchan, N. Effects of combined pretreatments on drying kinetics and quality of potato chips undergoing low-pressure superheated steam drying. J. Food Eng. 2007, 81, 318–329. [Google Scholar] [CrossRef]
- Chao, E.; Li, J.; Fan, L. Enhancing drying efficiency and quality of seed-used pumpkin using ultrasound, freeze-thawing and blanching pretreatments. Food Chem. 2022, 384, 132496. [Google Scholar] [CrossRef]
- Sakooei-Vayghan, R.; Peighambardoust, S.H.; Hesari, J.; Peressini, D. Effects of osmotic dehydration (with and without sonication) and pectin based coating pretreatments on functional properties and color of hot-air dried apricot cubes. Food Chem. 2020, 311, 125978. [Google Scholar] [CrossRef]
- Sarkar, A.; Ahmed, T.; Alam, M.; Rahman, S.; Pramanik, S.K. Influences of osmotic dehydration on drying behavior and product quality of coconut (Cocos nucifera). Asian Food Sci. J. 2020, 15, 21–30. [Google Scholar] [CrossRef]
- Gamboa-Samtos, J.; Soria, A.C.; Villamiel, M.; Montilla, A. Quality parameters in convective dehydrated carrots blanched by ultrasound and conventional treatment. Food Chem. 2013, 141, 616–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mothibe, K.J.; Zhang, M.; Nsor-atindana, J.; Wang, Y.C. Use of ultrasound pretreatment in drying of fruits: Drying rates, quality attributes, and shelf life extension. Dry. Technol. 2011, 29, 1611–1621. [Google Scholar] [CrossRef]
- Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K. Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT Food Sci. Technol. 2018, 87, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Zucca, P.; Orhan, I.E.; Azzini, E.; Adetunji, C.O.; Mohammed, S.A.; Banerjee, S.K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and health: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 502–516. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; El Gasim, A.Y.A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem. 2021, 343, 128404. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Sorifa, A.M.; Eun, J.B. Effect of pretreatments and drying temperatures on sweet potato flour. Int. J. Food Sci. Technol. 2010, 45, 726–732. [Google Scholar] [CrossRef]
- Ortuño, C.; Pérez-Munuera, I.; Puig, A.; Riera, E.; Garcia-Perez, J.V. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Phys. Procedia 2010, 3, 153–159. [Google Scholar] [CrossRef]
Pretreatment Methods | L* | a* | b* | ΔE | TPC (mg/g) | DPPH Radical Scavenging Activity (%) | |
---|---|---|---|---|---|---|---|
Untreated | - | 72.67 ± 0.48 a | 8.24 ± 0.09 a | 26.13 ± 0.18 a | 24.60 ± 0.91 a | 0.31 ± 0.02 d,e | 34.12 ± 1.51 c |
Blanching | 30 s | 51.35 ± 1.13 e,f | 4.44 ± 0.07 f,g | 15.83 ± 0.33 e | 3.45 ± 0.50 f | 0.45 ± 0.05 a | 56.45 ± 1.02 a |
60 s | 50.50 ± 0.69 e,f | 5.02 ± 0.36 e,f | 17.88 ± 0.63 d | 5.54 ± 0.37 e,f | 0.42 ± 0.03 a,b | 52.01 ± 3.94 a | |
90 s | 49.89 ± 1.01 f | 6.10 ± 0.34 c,d | 18.20 ± 0.20 d | 6.17 ± 0.98 e,f | 0.32 ± 0.02 c,d | 38.82 ± 3.66 c | |
Saline immersion | 5% | 67.28 ± 1.44 b | 7.09 ± 0.67 b | 27.01 ± 2.22 a | 20.82 ± 2.44 b,c | 0.27 ± 0.04 e,f | 26.38 ± 0.81 d |
10% | 63.12 ± 1.26 c | 7.10 ± 0.57 b | 20.29 ± 0.44 c | 13.42 ± 1.41 d | 0.28 ± 0.03 d,e | 25.08 ± 0.90 d | |
20% | 59.81 ± 0.71 d | 5.31 ± 0.43 d,e | 17.03 ± 0.63 d,e | 8.68 ± 1.32 e | 0.22 ± 0.02 g | 17.15 ± 1.30 c | |
Ultrasound | 10 min | 72.23 ± 0.31 a | 6.49 ± 0.22 b,c | 26.01 ± 1.10 a | 23.97 ± 1.48 a,b | 0.40 ± 0.05 b | 46.72 ± 3.13 b |
30 min | 71.92 ± 0.71 a | 5.87 ± 0.21 c,d | 23.44 ± 1.26 c | 22.34 ± 1.79 a,b,c | 0.35 ± 0.04c | 45.07 ± 2.19 b | |
60 min | 70.86 ± 1.88 a | 5.44 ± 0.39 d,e | 21.30 ± 0.62 c | 20.40 ± 2.08 c | 0.22 ± 0.03 f,g | 33.65 ± 0.98 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.-W.; Dai, Y.; Wang, Y.-C.; Cai, J.-R.; Zhang, L.; Tian, X.-Y. Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes. Agriculture 2022, 12, 1841. https://doi.org/10.3390/agriculture12111841
Bai J-W, Dai Y, Wang Y-C, Cai J-R, Zhang L, Tian X-Y. Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes. Agriculture. 2022; 12(11):1841. https://doi.org/10.3390/agriculture12111841
Chicago/Turabian StyleBai, Jun-Wen, Yi Dai, Yu-Chi Wang, Jian-Rong Cai, Lu Zhang, and Xiao-Yu Tian. 2022. "Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes" Agriculture 12, no. 11: 1841. https://doi.org/10.3390/agriculture12111841
APA StyleBai, J. -W., Dai, Y., Wang, Y. -C., Cai, J. -R., Zhang, L., & Tian, X. -Y. (2022). Potato Slices Drying: Pretreatment Affects the Three-Dimensional Appearance and Quality Attributes. Agriculture, 12(11), 1841. https://doi.org/10.3390/agriculture12111841