Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Urban–Rural Income Gap and its Influencing Factors
2.2. The Influence of Education Level on the Rural–Urban Income Gap
2.3. The Influence of Agricultural TFP on the Rural–Urban Income Gap
2.4. Methods
2.4.1. Efficiency Measurement Using Stochastic Frontier Analysis
2.4.2. Dynamic Panel Data Model
2.4.3. The Mediation Model
2.4.4. Interaction Effect Model
2.4.5. Data and Variable Construction
Variable Selection in the Calculation of Agricultural TFP Change
Construction of Variables Influencing the Rural–Urban Income Gap
- Economy. The level and structure of economic development are reflected by the per capita real gross domestic product (RGDP) and the proportion of non-agricultural output, respectively [51].
- Agriculture. We also took into account the agricultural development situation. Agricultural TFP change and agricultural tax are selected as agricultural development indicators [52].
- Openness. The degree of China’s openness is measured by the share of foreign direct investment (FDI) in GDP. It is generally believed that the improvement of the opening level will widen the rural–urban income gap. However, this effect may also be altered by the export of agricultural products and the transfer of agricultural labor [5].
- Fiscal. In China, the government plays an important role in economic and social activities, and its actions have a major impact on China’s economic development. On one hand, the government’s policy behavior can effectively promote economic development and significantly improve farmers’ income. On the other hand, urban policies have to a certain extent widened the income gap between urban and rural residents [56].
- Finance. From the perspective of financial constraints, urban residents themselves have more abundant funds, compared with rural residents, so it is more likely for them to meet financial service conditions and enjoy high-yield returns. However, due to the threshold restrictions of financial services, it is not easy for rural residents to enjoy financial services, which will further widen income gap between urban and rural residents [6,57]. This paper selects the proportion of deposit balance and loan balance in GDP to represent the financial development level of each province.
Data Source and Descriptive Statistical Analysis
3. Results
3.1. The Calculation of the Total Factor Productivity of Agriculture in China
3.2. The Effect of Farmers’ Education Level on the Rural–Urban Income Gap
3.3. The Effect of Farmer’s Education Level on Agricultural TFP
3.4. The Effect of Farmer’s Education Level and Agricultural TFP on the Rural–Urban Income Gap
3.5. Interaction of Farmers’ Education Level and Agricultural TFP Regarding the Rural–Urban Income Gap
3.6. Quantile Regression Analysis of Farmers’ Education Level, Agricultural TFP, and the Rural–Urban Income Gap
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berisha, E.; Meszaros, J. Macroeconomic determinants of wealth inequality dynamics. Econ. Model. 2020, 89, 153–165. [Google Scholar] [CrossRef]
- Chu, L.K.; Hoang, D.P. How does economic complexity influence income inequality? New evidence from international data. Econ. Anal. Policy 2020, 68, 44–57. [Google Scholar] [CrossRef]
- Chen, B.K.; Lin, Y.F. Development strategy, urbanization and the rural-urban income gap in China. Soc. Sci. China 2014, 35, 5–20. [Google Scholar]
- Wang, S.L.; Tan, S.K.; Yang, S.F.; Lin, Q.W.; Zhang, L. Urban-biased land development policy and the rural-urban income gap: Evidence from Hubei Province, China. Land Use Policy 2019, 87, 104066. [Google Scholar] [CrossRef]
- Wang, X.; Shao, S.; Li, L. Agricultural inputs, urbanization and rural-urban income disparity: Evidence from China. China Econ. Rev. 2019, 55, 67–84. [Google Scholar] [CrossRef]
- Su, C.W.; Song, Y.; Ma, Y.T.; Tao, R. Is financial development narrowing the rural-urban income gap? A cross-regional study of China. Pap. Reg. Sci. 2019, 98, 1779–1800. [Google Scholar] [CrossRef]
- Su, Y.F.; Lau, C.; Rao, N. Early education policy in China: Reducing regional and socioeconomic disparities in preschool attendance. Early Child. Res. Q. 2020, 53, 11–22. [Google Scholar] [CrossRef]
- Zhang, H.F. Opportunity or new poverty trap: Rural-urban education disparity and internal migration in China. China Econ. Rev. 2017, 44, 112–124. [Google Scholar] [CrossRef]
- Su, B.W.; Heshmati, A. Analysis of the determinants of income and income gap between urban and rural China. China Econ. Policy Rev. 2013, 2, 1350002. [Google Scholar] [CrossRef] [Green Version]
- Zachariadis, M.; Savvides, A. International Technology Diffusion and the Growth of TFP in the Manufacturing Sector of Developing Economies. Rev. Dev. Econ. 2005, 9, 482–501. [Google Scholar]
- Luo, C.L.; Li, S.; Sicular, T. The long-term evolution of national income inequality and rural poverty in China. China Econ. Rev. 2020, 62, 101465. [Google Scholar] [CrossRef]
- Chen, L.L.; Shen, W. Spatiotemporal differentiation of rural-urban income disparity and its driving force in the Yangtze River Economic Belt during 2000–2017. PLoS ONE 2021, 16, e0245961. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, D. Openness, rural-urban inequality, and happiness in China. Economic Systems. Econ. Syst. 2020, 44, 100834. [Google Scholar] [CrossRef]
- Wang, M.; Kang, W.M.; Zhang, R.Y. The gap between urban and rural development levels narrowed. Complexity 2020, 2020, 4615760. [Google Scholar] [CrossRef]
- Song, H.Y.; Ma, Y.L. An estimation of the rural-urban gap in China using the Human Development Index. Econ. Res. 2004, 11, 4–15. [Google Scholar]
- Gradín, C.; Wu, B.B. Income and consumption inequality in China: A comparative approach with India. China Econ. Rev. 2020, 62, 101463. [Google Scholar] [CrossRef]
- Li, S.; Luo, C.L. Re-estimating the income gap between urban and rural households in China. Procedia-Soc. Behav. Sci. 2010, 2, 7151–7163. [Google Scholar]
- Ji, X.; Wang, K.; Xu, H.; Li, M. Has Digital Financial Inclusion Narrowed the Urban-Rural Income Gap: The Role of Entrepreneurship in China. Sustainability 2021, 13, 8292. [Google Scholar] [CrossRef]
- Zhong, S.J.; Wang, M.S.; Zhu, Y.; Chen, Z.G.; Huang, X.J. Urban expansion and the urban-rural income gap: Empirical evidence from China. Cities 2022, 129, 103831. [Google Scholar] [CrossRef]
- Zhu, S.J.; Yu, C.D.; He, C.F. Export structures, income inequality and rural-urban divide in China. Appl. Geogr. 2020, 115, 102150. [Google Scholar] [CrossRef]
- Chen, Y.G.; Luo, P.; Chang, T. Urbanization and the urban-rural income gap in China: A continuous wavelet coherency analysis. Sustainability 2020, 12, 8261. [Google Scholar] [CrossRef]
- Weng, Y.Z.; Zeng, Y.T.; Lin, W.S. Do rural highways narrow Chinese farmers’ income gap among provinces? J. Integr. Agric. 2021, 20, 905–914. [Google Scholar] [CrossRef]
- Wang, S.L.; Huang, J.K.; Wang, X.B.; Tuan, F. Are China’s regional agricultural productivities converging: How and why? Food Policy 2019, 86, 101727. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, M.S.; Zhu, Y.; Huang, X.J.; Xiong, X.F. Urbanization’s effects on the rural-urban income gap in China: A meta-regression analysis. Land Use Policy 2020, 99, 104995. [Google Scholar] [CrossRef]
- Li, Y.C.; Wang, X.P.; Zhu, Q.S.; Zhao, H. Assessing the spatial and temporal differences in the impacts of factor allocation and urbanization on urban-rural income disparity in China, 2004–2010. Habitat Int. 2014, 42, 76–82. [Google Scholar] [CrossRef]
- Lessmann, C.; Seidel, A. Regional inequality, convergence and its determinants—A view from outer space. Eur. Econ. Rev. 2017, 92, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Anlimachie, M.A.; Avoada, C. Socio-economic impact of closing the rural-urban gap in pre-tertiary education in Ghana: Context and strategies. Int. J. Educ. Dev. 2020, 77, 102236. [Google Scholar] [CrossRef]
- Alves, L.G.A.; Andrade, J.S.; Hanley, Q.S.; Ribeiro, H.V. The hidden traits of endemic illiteracy in cities. Phys. A Stat. Mech. Its Appl. 2019, 515, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.Y.; Zang, L.Z.; Sun, J. Does computer penetration increase farmers’ income? An empirical study from China. Telecommun. Policy 2018, 42, 345–360. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Baležentis, T.; Ferrier, G.D. Agricultural productivity evolution in China: A generalized decomposition of the Luenberger-Hicks-Moorsteen productivity indicator. China Econ. Rev. 2019, 57, 101315. [Google Scholar] [CrossRef]
- Han, W.; Wei, Y.G.; Cai, J.M.; Yu, Y.J.; Chen, F.R. Rural nonfarm sector and rural residents’ incomeresearch in China. An empirical study on the township and village enterprises after ownership reform (2000–2013). J. Rural Stud. 2021, 82, 161–175. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Peng, J.G. Financial inclusion and agricultural total factor productivity growth in China. Econ. Model. 2021, 96, 68–82. [Google Scholar] [CrossRef]
- Wang, C.; Deng, M.Z.; Deng, J.F. Factor reallocation and structural transformation implications of grain subsidies in China. J. Asian Econ. 2020, 71, 101248. [Google Scholar] [CrossRef]
- Li, Q.; Wu, X.H.; Zhang, Y.; Wang, F.Y. The effect of agricultural environmental total factor productivity on rural-urban income gap: Integrated view from China. Sustainability 2020, 12, 3327. [Google Scholar] [CrossRef]
- Tan, Y.T.; Xu, H.; Zhang, X.L. Sustainable urbanization in China: A comprehensive literature review. Cities 2016, 55, 82–93. [Google Scholar] [CrossRef]
- Rada, N.; Helfand, S.; Magalhães, M. Agricultural productivity growth in Brazil: Large and small farms excel. Food Policy 2019, 84, 176–185. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of total-factor productivity and efficiency changes in China’s agriculture. Agriculture 2020, 10, 279. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, R. Does Fertilizer Use Intensity Respond to the Urban-Rural Income Gap? Evidence from a Dynamic Panel-Data Analysis in China. Sustainability 2020, 12, 430. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.X.; Zhang, Y. Financial Inclusion and Urban-Rural Income Inequality: Long-Run and Short-Run Relationships. Emerg. Mark. Financ. Trade 2019, 56, 457–471. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Xiong, X. Innovation and environmental total factor productivity in China: The moderating roles of economic policy uncertainty and marketization process. Env. Sci. Pollut. Res. 2021, 28, 9558–9581. [Google Scholar] [CrossRef]
- Liu, J.; Rahman, S.; Sriboonchitta, S.; Wiboonpongse, A. Enhancing Productivity and Resource Conservation by Eliminating Inefficiency of Thai Rice Farmers: A Zero Inefficiency Stochastic Frontier Approach. Sustainability 2017, 9, 770. [Google Scholar] [CrossRef] [Green Version]
- Coelli, T.J. Recent Development in Frontier Modeling and Efficiency Measurement. Aust. J. Agric. Econ. 1995, 39, 219–245. [Google Scholar]
- Laureti, T.; Benedetti, I.; Branca, G. Water use efficiency and public goods conservation: A spatial stochastic frontier model applied to irrigation in Southern Italy. Socio-Econ. Plan. Sci. 2021, 73, 100856. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lovell, C.A.K. Stochastic Frontier Analysis; Cambridge University Press: Cambridge, UK, 2000; pp. 279–309. [Google Scholar]
- Liu, J.; Wang, M.; Yang, L.; Rahman, S.; Sriboonchitta, S. Agricultural productivity growth and its determinants in South and Southeast Asian countries. Sustainability 2020, 12, 4981. [Google Scholar] [CrossRef]
- Ullah, S.; Akhtar, P.; Zaefarian, G. Dealing with endogeneity bias: The generalized method of moments (GMM) for panel data. Ind. Mark. Manag. 2018, 71, 69–78. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some tests of specification for panel data: Monte carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Garg, A.K. Bank stocks inform higher growth-A System GMM analysis of ten emerging markets in Asia. Q. Rev. Econ. Financ. 2021, 79, 210–220. [Google Scholar] [CrossRef]
- Rahman, S.; Salim, R. Six decades of total factor productivity change and sources of growth in Bangladesh agriculture. J. Agric. Econ. 2013, 64, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Song, Y.; He, Q.; Liu, Y. Urban-rural income change: Influences of landscape pattern and administrative spatial spillover effect. Appl. Geogr. 2018, 97, 248–262. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y. The effect of China’s agricultural tax abolition on rural families’ incomes and production. China Econ. Rev. 2014, 29, 185–199. [Google Scholar] [CrossRef]
- Dong, X.; Hao, Y. Would income inequality affect electricity consumption? Evidence from China. Energy 2018, 142, 215–227. [Google Scholar] [CrossRef]
- Su, C.; Liu, T.; Chang, H.; Jiang, X. Is urbanization narrowing the rural-urban income gap? A cross-regional study of China. Habitat Int. 2015, 48, 79–86. [Google Scholar] [CrossRef]
- Lu, D. Rural-urban income disparity: Impact of growth, allocative efficiency and local growth welfare. China Econ. Rev. 2002, 13, 419–429. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Song, Y.; Liang, X.; Wang, L.; Geng, Y. Fiscal decentralization, rural-urban income gap and tourism. Sustainability 2020, 12, 10398. [Google Scholar] [CrossRef]
- Seven, Ü. Finance, talent and income inequality: Cross-country evidence. Borsa Istanb. Rev. 2022, 22, 57–68. [Google Scholar] [CrossRef]
- Sheng, Y.; Tian, X.; Qiao, W.; Peng, C. Measuring agricultural total factor productivity in China: Pattern and drivers over the period of 1978–2016. Aust. J. Agric. Resour. Econ. 2020, 64, 82–103. [Google Scholar] [CrossRef]
- Tang, J.J.; Gong, J.W.; Ma, W.L.; Rahut, D.B. Narrowing urban-rural income gap in China: The role of the targeted poverty alleviation program. Econ. Anal. Policy 2022, 75, 74–90. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Koenker, R. Quantile regression for longitudinal data. Multivar. Anal. 2004, 91, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z. Analysis on the effect of farmer income of policy-based agricultural insurance. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2022, 72, 386–400. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Wang, H.; Yang, J. The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation. Int. J. Environ. Res. Public Health 2022, 19, 10794. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Q.; Zhou, H. Digital Rural Construction and Farmers’ Income Growth: Theoretical Mechanism and Micro Experience Based on Data from China. Sustainability 2022, 14, 11679. [Google Scholar] [CrossRef]
Not Affected by TFP Change | Affected by TFP Change | |
---|---|---|
Not affected by farmers’ education | Case 1. Model (i) | Case 2. Model (ii) |
Affected by farmers’ education | Case 3. Model (iii) | Case 4. Model (iv) |
Variable | Unit | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
I. Rural–urban income gap | |||||
Urban income/rural income | Ratio | 2.966 | 0.547 | 1.845 | 4.771 |
II. Factors affecting agricultural output | |||||
Agricultural output | 108 Yuan | 1130.443 | 1047.48 | 13.9 | 5174.9 |
Labor input | 104 Person | 993.6597 | 717.925 | 34.62 | 3398 |
Planting area | 103 Ha | 5304.828 | 3590.794 | 120.94 | 14,902.72 |
Machinery power | 104 Kilowatt | 2858.595 | 2736.308 | 95.32 | 13,353.02 |
Plastic film | 104 Ton | 7.0992 | 6.4387 | 0.0821 | 34.3524 |
Pesticide | 104 Ton | 5.447458 | 4.325183 | 0.16 | 17.35 |
III. Factors affecting rural–urban income gap | |||||
Illiteracy rate | Percent | 7.1607 | 4.4989 | 1.23 | 24.07 |
Per capita GDP | 104 Yuan | 2.6672 | 1.8384 | 0.3701 | 10.4133 |
Non-agricultural | Percent | 88.4185 | 6.1314 | 62.9872 | 99.6384 |
Fiscal revenue | Percent | 14.53 | 4.28037 | 8.1 | 32.7 |
Fiscal pressure | - | 2.2420 | 0.9386 | 1.0516 | 6.7450 |
Urban | Percent | 51.1948 | 14.4544 | 19.85 | 89.6 |
Population | 108 person | 286.8196 | 1002.442 | 0.0533 | 4622.064 |
Unemployment | Percent | 3.5810 | 0.6926 | 1.21 | 6.5 |
Open | Percent | 41.2006 | 51.4200 | 4.8067 | 585.7918 |
Tax | - | 0.7333 | 0.4427 | 0 | 1 |
Education fund | Percent | 4.9110 | 1.4857 | 2.4773 | 10.3802 |
Education years | year | 8.6820 | 1.0413 | 6.0404 | 12.7653 |
Deposits balance | Percent | 1.6232 | 0.7063 | 0.7509 | 5.5865 |
Loan balance | Percent | 1.1631 | 0.4290 | 0.2877 | 2.5847 |
Model (i) | Model (ii) | Model (iii) | Model (iv) | |
---|---|---|---|---|
OLS | FE | System GMM | Robustness | |
L.income gap | 0.9454 *** | 0.8455 *** | 0.8665 *** | 0.4338 *** |
(0.0192) | (0.0277) | (0.0493) | (0.0498) | |
Illiteracy rate | 0.0118 *** | 0.0196 *** | 0.0299 *** | 0.0024 *** |
(0.0029) | (0.0035) | (0.0028) | (0.0003) | |
RGDP | −0.0083 | −0.0062 | −0.0245 *** | 0.0316 *** |
(0.0060) | (0.0101) | (0.0088) | (0.0059) | |
Non-agricultural | 0.0003 | −0.0023 | 0.0074 * | 0.0035 *** |
(0.0013) | (0.0033) | (0.0042) | (0.0005) | |
Fiscal revenue | −0.0018 | −0.0029 | −0.0047 | −0.0030 *** |
(0.0021) | (0.0047) | (0.0029) | (0.0007) | |
Financial pressure | 0.0008 (0.0077) | 0.0143 (0.0267) | 0.0477 ** (0.0242) | −0.0223 *** (0.0037) |
Urban | −0.0009 (0.0009) | −0.0019 (0.0013) | 0.0004 (0.0009) | −0.0105 *** (0.0020) |
Population | 4.23 × 10−6 (3.97 × 10−6) | 0.00008 (0.0001) | 0.0001 (0.0001) | −0.00007 ** (0.00003) |
Unemployment | 0.0086 (0.0073) | 0.0048 (0.0189) | 0.0019 (0.0176) | 0.0396 *** (0.0063) |
Open | 0.0002 *** | 0.00001 | −0.0001 * | −0.00002 *** |
(0.00007) | (0.0001) | (0.0001) | (9.48 × 10−6) | |
Tax | −0.0356 ** | 0.0266 | 0.0129 | −0.0023 |
(0.0151) | (0.0198) | (0.0118) | (0.0021) | |
Education years | 0.0481 *** | 0.0160 | 0.0773 *** | −0.0080 *** |
(0.0168) | (0.0238) | (0.0151) | (0.0030) | |
Deposits balance | 0.0163 | 0.0403727 | 0.1052 * | 0.0263 ** |
(0.0154) | (0.0418) | (0.0584) | (0.0127) | |
Loan balance | −0.0357 | −0.0507 | −0.2158 ** | −0.0580 *** |
(0.0241) | (0.0441) | (0.0935) | (0.0155) | |
Constant | −0.2931 * | 0.4319 | −1.1640 *** | 0.3303 *** |
(0.1752) | (0.4020) | (0.3879) | (0.1191) | |
R2 | 0.9698 | 0.8731 | ||
F-statistic | 756.30 | 350.88 | ||
Wald test (chi2) | 3713.72 | 41064.03 | ||
Wald test (p-value) | 0.0000 | 0.0000 | ||
Sargan test (chi2) | 27.0227 | 22.9966 | ||
Sargan test (p-value) | 0.8859 | 0.9652 | ||
Arellano-Bond test for AR(1) | ||||
(z-statistic) | −3.569 | −1.0786 | ||
(p-value) | 0.0004 | 0.2808 | ||
Arellano-Bond test for AR(2) | ||||
(z-statistic) | −0.2081 | −0.6804 | ||
(p-value) | 0.8351 | 0.4962 |
TFP Change | TC | TEC | SC | |
---|---|---|---|---|
Constant | −0.3861 * (0.2021) | 0.1402 *** (0.0227) | −0.5291 *** (0.2006) | 0.0027 *** (0.0008) |
Illiteracy rate | −0.0042 ** (0.0018) | −0.0011 *** (0.0002) | −0.0030 * (0.0018) | −0.00001 (0.00001) |
Saving | −0.0733 *** (0.0186) | −0.0448 *** (0.0022) | −0.0281 (0.0181) | −0.0003 *** (0.0001) |
Size | 0.0362 (0.0269) | −0.0049 (0.0053) | 0.0412 (0.0274) | −0.0001 (0.0001) |
Expenditure | −0.0283 *** (0.0107) | −0.0202 *** (0.0016) | −0.0080 (0.0104) | 0.00001 (0.0001) |
Development | 0.0623 *** (0.0202) | 0.0093 *** (0.0019) | 0.0530 *** (0.0200) | −0.00007 (0.00009) |
Disaster | −0.1267 *** (0.0403) | 0.0032 (0.0084) | −0.1314 *** (0.0400) | 0.0014 ** (0.0006) |
Irrigation | 0.1805 *** (0.0652) | 0.0013 (0.0078) | 0.1798 *** (0.0627) | −0.0006 * (0.0003) |
Population | −0.0016 (0.0013) | 0.0001 (0.0003) | −0.0016 (0.0012) | −0.00004 ** (0.00001) |
Older | −0.4808 ** (0.2251) | 0.0693 * (0.0395) | −0.5422 ** (0.2248) | −0.0079 *** (0.0019) |
R-squared | 0.1082 | 0.8544 | 0.0655 | 0.3023 |
F-statistics | 7.50 | 396.13 | 2.05 | 27.10 |
Prob > F | 0.0000 | 0.0000 | 0.0328 | 0.0000 |
Model (i) | Model (ii) | Model (iii) | Model (iv) | |
---|---|---|---|---|
OLS | FE | System GMM | Robustness | |
L.income gap | 0.9465 *** (0.0192) | 0.8439 *** (0.0274) | 0.8441 *** (0.0383) | 0.2975 *** (0.0535) |
Illiteracy rate | 0.0120 *** (0.0030) | 0.0197 *** (0.0034) | 0.0212 *** (0.0034) | 0.0015 *** (0.0004) |
TFP change | 0.0175 | −0.3357 *** | −0.3882 *** | −0.1177 *** |
(0.0238) | (0.1133) | (0.0900) | (0.0168) | |
RGDP | −0.0083 | −0.0145 | −0.0332 *** | 0.0336 *** |
(0.0060) | (0.0104) | (0.0102) | (0.0034) | |
Non-agricultural | (0.0002) | −0.0051 | −0.0024 | −0.0039 *** |
(0.0013) | (0.0034) | (0.0048) | (0.0011) | |
Fiscal revenue | −0.0016 | −0.0025 | −0.0066 ** | 0.0009 |
(0.0022) | (0.0046) | (0.0032) | (0.0007) | |
Financial pressure | 0.0011 (0.0078) | 0.0075 (0.0266) | 0.0049 (0.0280) | 0.0044 (0.0031) |
Urban | −0.0008 (0.0009) | −0.0030 ** (0.0014) | −0.0015 ** (0.0006) | −0.0148 *** (0.0014) |
Population | 4.70 × 10−6 (4.08 × 10−6) | 0.00005 (0.0001) | 0.00003 (0.00009) | −0.00006 * (0.00003) |
Unemployment | 0.0078 (0.0074) | 0.0070 (0.0188) | 0.0295 * (0.0171) | 0.0130 *** (0.0047) |
Open | (0.0002) *** | −0.00002 | −0.0001 | −0.00004 |
(0.00007) | (0.0001) | (0.0001) | (0.00003) | |
Tax | −0.0346 ** | 0.0160 | 0.0041 | 0.0029 * |
(0.0152) | (0.0199) | (0.0090) | (0.0018) | |
Education years | 0.0486 *** | 0.0243 | 0.0718 *** | 0.0029 *** |
(0.0170) | (0.0237) | (0.0142) | (0.0018) | |
Deposits balance | 0.0145 | 0.0284 | 0.0927 | −0.0168 * |
(0.0157) | (0.0416) | (0.0657) | (0.0098) | |
Loan balance | −0.0354 | −0.0395 | −0.1382 | −0.0118 |
(0.0241) | (0.0438) | (0.0894) | (0.0085) | |
Constant | −0.3034 * | 0.7660 * | 0.0775 | 1.2956 *** |
(0.1774) | (0.4136) | (0.4923) | (0.1677) | |
R2 | 0.9698 | 0.8760 | ||
F-statistic | 702.83 | 176.58 | ||
Wald test (chi2) | 46489.35 | 22,047.27 | ||
Wald test (p-value) | 0.0000 | 0.0000 | ||
Sargan test (chi2) | 25.1858 | 19.1911 | ||
Sargan test (p-value) | 1.0000 | 1.0000 | ||
Arellano–Bond test for AR(1) | ||||
(z-statistic) | −3.446 | −0.9354 | ||
(p-value) | 0.0006 | 0.3496 | ||
Arellano–Bond test for AR(2) | ||||
(z-statistic) | −0.2645 | −0.5526 | ||
(p-value) | 0.7913 | 0.5805 |
Model (i) | Model (ii) | Model (ii) | |
---|---|---|---|
illiteracy rate | 0.0151 *** (0.0050) | 0.0326 *** (0.0034) | 0.0230 *** (0.0027) |
TEC | −0.5615 *** (0.1295) | ||
TC | −0.5198 (0.8496) | ||
SC | −6.9760 (13.1640) | ||
Control variables | YES | YES | YES |
Wald test (chi2) | 31,045.26 | 13,419.72 | 26,921.69 |
Wald test (p-value) | 0.0000 | 0.0000 | 0.0000 |
Sargan test (chi2) | 24.3832 | 26.1343 | 27.2323 |
Sargan test (p-value) | 1.0000 | 1.0000 | 1.0000 |
Arellano–Bond test for AR(1) | |||
(z-statistic) | −3.035 | −3.6362 | −3.3044 |
(p-value) | 0.0024 | 0.0003 | 0.0010 |
Arellano–Bond test for AR(2) | |||
(z-statistic) | −0.3114 | −0.1904 | −0.2742 |
(p-value) | 0.7555 | 0.8490 | 0.7839 |
Model (i) | Model (ii) | Model (iv) | |
---|---|---|---|
L.income gap | 0.8345 *** (0.0467) | 0.7759 *** (0.0489) | 0.7985 *** (0.0775) |
Illiteracy rate | 0.0220 *** (0.0040) | ||
TFP change | −0.4561 *** | −0.3545 ** | |
(0.0816) | (0.1552) | ||
TFP change * illiteracy rate | 0.0077 * | ||
(0.0046) | |||
RGDP | −0.0154 | −0.0339 *** | −0.0362 *** |
(0.0106) | (0.0109) | (0.0123) | |
Non-agricultural | 0.0009 | −0.0045 | −0.0023 |
(0.0029) | (0.0056) | (0.0065) | |
Fiscal revenue | −0.0065 * | −0.0094 *** | −0.0051 |
(0.0035) | (0.0035) | (0.0038) | |
Financial pressure | 0.0320 (0.0282) | 0.0282 (0.0265) | 0.0134 (0.0198) |
Urban | −0.0019 *** (0.0005) | −0.0035 *** (0.0006) | −0.0012 (0.0053) |
Population | −0.0001 (0.0004) | 0.00005 (0.00008) | −0.0001 (0.0003) |
Unemployment | −0.0038 (0.0233) | 0.0342 (0.0226) | 0.0549 *** (0.0205) |
Open | 0.0002 ** | 0.0001 | −0.00008 |
(0.0001) | (0.0001) | (0.0001) | |
Tax | −0.0488 *** | −0.0341 ** | 0.0258 |
0.0104) | (0.0136) | (0.0215) | |
Education years | −0.0054 | 0.0197 | 0.0710 *** |
(0.0143) | (0.0169) | (0.0158) | |
Deposits balance | 0.1413 *** | 0.1290 ** | 0.1047 ** |
(0.0351) | (0.0529) | (0.0519) | |
Loan balance | −0.1833 *** | −0.1741 * | −0.1475 ** |
(0.0580) | (0.0904) | (0.0600) | |
Constant | 0.6715 ** | 1.1533 ** | 0.1017 |
(0.3096) | (0.4933) | (0.6101) | |
Wald test (chi2) | 39,081.53 | 29,630.57 | 19,727.57 |
Wald test (p-value) | 0.0000 | 0.0000 | 0.0000 |
Sargan test (chi2) | 28.8296 | 25.3580 | 26.8940 |
Sargan test (p-value) | 1.0000 | 1.0000 | 1.0000 |
Arellano–Bond test for AR(1) | |||
(z-statistic) | −3.6071 | −3.4393 | −3.1541 |
(p-value) | 0.0003 | 0.0006 | 0.0016 |
Arellano–Bond test for AR(2) | |||
(z-statistic) | −0.1802 | −0.3964 | −0.6654 |
(p-value) | 0.8570 | 0.6917 | 0.5058 |
QR_10 | QR_25 | QR_50 | QR_75 | QR_90 | |
---|---|---|---|---|---|
Illiteracy rate | 0.0416 *** (0.0100) | 0.0332 *** (0.0067) | 0.0311 *** (0.0070) | 0.0329 *** (0.0066) | 0.0310 *** (0.0115) |
TFP change | 0.0964 (0.1003) | 0.0428 (0.0714) | −0.0416 (0.0598) | −0.2090 ** (0.1031) | −0.3958 *** (0.0893) |
Control variables | YES | YES | YES | YES | YES |
Constant | 2.5935 *** (0.1919) | 2.9635 *** (0.1447) | 3.3053 *** (0.1584) | 4.0206 *** (0.3492) | 4.7457 *** (0.3196) |
R2 | 0.3804 | 0.3997 | 0.4372 | 0.4763 | 0.5550 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, X.; Liu, S.; Rahman, S.; Sriboonchitta, S. Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects. Agriculture 2022, 12, 1920. https://doi.org/10.3390/agriculture12111920
Liu J, Li X, Liu S, Rahman S, Sriboonchitta S. Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects. Agriculture. 2022; 12(11):1920. https://doi.org/10.3390/agriculture12111920
Chicago/Turabian StyleLiu, Jianxu, Xiaoqing Li, Shutong Liu, Sanzidur Rahman, and Songsak Sriboonchitta. 2022. "Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects" Agriculture 12, no. 11: 1920. https://doi.org/10.3390/agriculture12111920
APA StyleLiu, J., Li, X., Liu, S., Rahman, S., & Sriboonchitta, S. (2022). Addressing Rural–Urban Income Gap in China through Farmers’ Education and Agricultural Productivity Growth via Mediation and Interaction Effects. Agriculture, 12(11), 1920. https://doi.org/10.3390/agriculture12111920