Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Acquisition of Environmental Data and Lettuce Images in the Solar Greenhouse
2.3. Calculation of Environmental Factors and Instantaneous Fresh Weight
2.3.1. Calculation of Cumulative Radiant Heat Product
2.3.2. Calculation of Crop Evapotranspiration
2.3.3. Calculation of Instantaneous Fresh Weight and Fresh Weight Increment
2.4. Exploration of Optimum Response Time in Days
2.5. Establishment of Dynamic Fresh Weight Growth Prediction Model
2.5.1. Predicting the Fresh Weight on the Next Day
2.5.2. Predicting the Fresh Weight in the Next 2 Days
2.5.3. Predicting the Fresh Weight in the Next m0 Days
3. Results and Discussion
3.1. Fresh Weight Growth Curve of Lettuce
3.2. Optimum Response Time
3.3. Using Batch Data to Predict the Dynamic Fresh Weight of Lettuce
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.; Ma, C.; Gao, H.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Sun, Z.; You, L.; Muller, D. Synthesis of agricultural land system change in China over the past 40 years. J. Land Use Sci. 2019, 13, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Yu, N.; Yang, F.; Mahkamov, K.; Han, F.; Li, Y.; Ling, H. Theoretical and experimental study on selection of physical dimensions of passive solar greenhouses for enhanced energy performance. Sol. Energy 2019, 191, 46–56. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zu, G.; Yang, F.J.; Li, D.Z.; Tian, L.M. Design of multi-functional solar greenhouses in high latitude areas. Trans. CSAE 2020, 36, 170–178. [Google Scholar]
- Bao, E.C.; Cao, Y.F.; Zou, Z.R.; Shen, T.T.; Zhang, Y. Research progress of thermal storage technology in energy-saving solar greenhouse. Trans. CSAE 2018, 34, 1–14. [Google Scholar]
- Nemali, K. History of Controlled Environment Horticulture: Greenhouses. HortScience 2022, 57, 239–246. [Google Scholar] [CrossRef]
- Berkers, E.; Geels, F.W. System innovation through stepwise reconfiguration: The case of technological transitions in Dutch greenhouse horticulture (1930–1980). Technol. Anal. Strateg. Manag. 2011, 23, 227–247. [Google Scholar] [CrossRef]
- Wang, T.; Wu, G.; Chen, J.; Cui, P.; Chen, Z.; Yan, Y.; Zhang, Y.; Li, M.; Niu, D.; Li, B.; et al. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renew. Sustain. Energy Rev. 2017, 70, 1178–1188. [Google Scholar] [CrossRef]
- Koukounaras, A. Advanced Greenhouse Horticulture: New Technologies and Cultivation Practices. Horticulturae 2021, 7, 1. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, L.; Xia, X. Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption. Appl. Energy 2021, 298, 117163. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Li, S.; Zhang, M.; Benli, H.; Wang, Y. Numerical Investigation for Effects of Natural Light and Ventilation on 3D Tomato Body Heat Distribution in a Venlo Greenhouse. Inf. Process. Agric. 2022, in press. [Google Scholar] [CrossRef]
- Liu, W. Engineering Technology Development of Temperature and Lighting Control Promote Productivity of Chinese Solar Greenhouse. Agric. Eng. 2015, 5, 15–17+42. [Google Scholar]
- Rajasekar, M.; Arumugam, T.; Kumar, S.R. Influence of weather and growing environment on vegetable growth and yield. J. Hort. 2013, 5, 160–167. [Google Scholar]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-L.; Chung, S.-C.; Fu, W.-L.; Huang, C.-C. Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosyst. Eng. 2021, 212, 77–105. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; Dobbelstena, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Kocian, A.; Massa, D.; Cannazzaro, S.; Incrocci, L.; Di Lonardo, S.; Milazzo, P.; Chessa, S. Dynamic Bayesian network for crop growth prediction in greenhouses. Comput. Electron. Agr. 2020, 169, 105167. [Google Scholar] [CrossRef]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Real-time growth rate and fresh weight estimation for little gem romaine lettuce in aquaponic grow beds. J. Comput. Electron. Agric. 2020, 179, 105827. [Google Scholar] [CrossRef]
- Jung, D.-H.; Park, S.H.; Han, H.; Kim, H.-J. Image processing methods for measurement of lettuce fresh weight. J. Biosyst. Eng. 2015, 40, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-S.; Kim, H.-J.; Cho, W.-J. On-the-go image processing system for spatial mapping of lettuce fresh weight in plant factory. IFAC-PapersOnLine 2018, 51, 130–134. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, J.Z.; Xu, Y.F.; Li, P.P. Lettuce yield and root distribution in substrates under drip irrigation and micro-sprinkler irrigation. Trans. Chin. Soc. Agric. Mach. 2014, 45, 156–160. [Google Scholar]
- Chen, X.L.; Yang, Q.C.; Ma, T.G.; Xue, X.Z.; Qiao, X.J.; Guo, W.Z. Effects of red and blue LED irradiation in different alternating frequencies on growth and quality of lettuce. Trans. Chin. Soc. Agric. Mach. 2017, 48, 257–262. [Google Scholar]
- Liu, L.; Yuan, J.; Zhang, Y.; Liu, X.M. Non-destructive Estimation Method of Fresh Weight of Substrate Cultured Lettuce in Solar Greenhouse. Trans. Chin. Soc. Agric. Mach. 2021, 52, 230–240. [Google Scholar]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef]
- Zhou, T.M.; Zhen, W.; Wang, Y.C.; Su, X.J.; Qin, C.X.; Huo, H.Q.; Jiang, F.L. Modelling seedling development using thermal effectiveness and photosynthetically active radiation. J. Integr. Agric. 2019, 18, 2521–2533. [Google Scholar] [CrossRef]
- Gu, Z.; Yuan, S.Q.; Qi, Z.M.; Wang, X.K.; Cai, B. Real-time precise irrigation scheduling and control system in solar greenhouse based on ET and water balance. Trans. Chin. Soc. Agric. Mach. 2018, 34, 101–108. [Google Scholar]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Mao, J.X. Analysis on conversion between solar radiance and illuminance. J. Henan Agric. Sci. 1995, 240, 11–12. [Google Scholar]
- Li, X.; Luo, X.L.; Wang, R.; Li, T.L.; Xu, H.; Zhao, X.Y. Analysis on Solar Radiation’s Changing Laws and Utilization in Solar Greenhouse. Chin. Agric. Sci. Bull. 2012, 28, 104–108. [Google Scholar]
- Langarizadeh, M.; Moghbeli, F. Applying naive bayesian networks to disease prediction: A systematic review. Acta Inform. Med. 2016, 24, 364. [Google Scholar] [CrossRef]
- Li, L.X.; Rahman, S.S.A. Students’ learning style detection using tree augmented naive Bayes. R. Soc. Open Sci. 2018, 5, 172108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harzevili, N.S.; Alizadeh, S.H. Mixture of latent multinomial naive Bayes classifier. Appl. Soft Comput. J. 2018, 69, 516–527. [Google Scholar] [CrossRef]
- Resco de Dios, V.; Roy, J.; Ferrio, J.P.; Alday, J.G.; Landais, D.; Milcu, A.; Gessler, A. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration. Sci. Rep. 2015, 5, 10975. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of lettuce transpiration for water status monitoring. Comput. Electron. Agric. 2018, 155, 50–57. [Google Scholar] [CrossRef]
- Jackson, R.B.; Sperry, J.S.; Dawson, T.E. Root water uptake and transport: Using physiological processes in global predictions. Trends Plant Sci. 2000, 5, 482–488. [Google Scholar] [CrossRef]
Cumulative Days | First Batch Samples | Second Batch Samples | Third Batch Samples | Average |
---|---|---|---|---|
10 | 0.9117 | 0.7976 | 0.9772 | 0.8955 |
11 | 0.9122 | 0.8339 | 0.9739 | 0.9067 |
12 | 0.9729 | 0.9347 | 0.9709 | 0.9595 |
13 | 0.9757 | 0.9414 | 0.8866 | 0.9346 |
Error | Day 1 in the Future | Day 2 in the Future | Day 3 in the Future | ||||
---|---|---|---|---|---|---|---|
Batches | MRE | σ | MRE | σ | MRE | σ | |
Current batch | 6.25% | 7.05% | 6.50% | 6.76% | 7.88% | 11.17% | |
Introducing another batch | 4.86% | 5.77% | 5.57% | 6.04% | 6.50% | 5.78% | |
Introducing another 2 batches | 4.35% | 4.87% | 5.40% | 5.38% | 5.29% | 6.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yuan, J.; Gong, L.; Wang, X.; Liu, X. Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data. Agriculture 2022, 12, 1959. https://doi.org/10.3390/agriculture12111959
Liu L, Yuan J, Gong L, Wang X, Liu X. Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data. Agriculture. 2022; 12(11):1959. https://doi.org/10.3390/agriculture12111959
Chicago/Turabian StyleLiu, Lin, Jin Yuan, Liang Gong, Xing Wang, and Xuemei Liu. 2022. "Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data" Agriculture 12, no. 11: 1959. https://doi.org/10.3390/agriculture12111959
APA StyleLiu, L., Yuan, J., Gong, L., Wang, X., & Liu, X. (2022). Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse Based on Phenotypic and Environmental Data. Agriculture, 12(11), 1959. https://doi.org/10.3390/agriculture12111959