Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments and Data Collection
2.2. Canopeo, NDVI and Weather Data Collection
2.3. Data Processing and Statistical Analysis
2.3.1. Simple Linear Regression and Generalised Additive Models
2.3.2. Model Evaluation
3. Results
3.1. Relationships between Yield and Sensors
3.2. Yield Estimatiion and Model Evaluation with Explanatory Variables Using a Generalised Additive Models (GAM)
4. Discussion
4.1. NDVI Yield Model
4.2. Canopeo-Index Yield Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MAFF. Ministry of Agriculture, Forestry and Fisheries Agricultural Statistics; Department of Planning, Statistics and International Cooperation: Phnom Penh, Cambodia, 2018. [Google Scholar]
- Gathala, M.K.; Kumar, V.; Sharma, P.C.; Saharawat, Y.S.; Jat, H.S.; Singh, M.; Kumar, A.; Jat, M.L.; Humphreys, E.; Sharma, D.K.; et al. Reprint of “Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the Northwestern Indo-Gangetic Plains of India”. Agric. Ecosyst. Environ. 2014, 187, 33–46. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Wang, W.; Zheng, H.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Chen, Q.; Cheng, T. Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102132. [Google Scholar] [CrossRef]
- Iizumi, T.; Ramankutty, N. How do weather and climate influence cropping area and intensity? Glob. Food Sec. 2015, 4, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Thornton, P.; Zougmoré, R.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Biswas, R.; Bhattacharyya, B.; Banerjee, S. Predicting Rice Yield from Weather Variable through Detrended Production Index. Contemp. Res. India 2017, 7, 462–466. [Google Scholar]
- Zhang, J.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X.; Zhang, J.; Liu, X.; et al. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors 2019, 19, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulton, P.L.; Vesna, T.; Dalgliesh, N.P.; Seng, V. Applying simulation to improve rice varieties in reducing the on-farm yield gap in Cambodian lowland rice ecosystems. Exp. Agric. 2015, 51, 264–284. [Google Scholar] [CrossRef]
- Gaydon, D.S.; Balwinder-Singh; Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 2017, 204, 52–75. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Genetic analysis of indirect selection for winter wheat grain yield using spectral reflectance indices. Crop Sci. 2007, 47, 1416–1425. [Google Scholar] [CrossRef] [Green Version]
- Rudiyanto; Minasny, B.; Shah, R.M.; Soh, N.C.; Arif, C.; Setiawan, B.I. Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform. Remote Sens. 2019, 11, 1666. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Song, R.; Li, D.; Zhou, K.; Zheng, H.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Spectroscopic Estimation of Biomass in Canopy Components of Paddy Rice Using Dry Matter and Chlorophyll Indices. Remote Sens. 2017, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Gnyp, M.L.; Yu, K.; Miao, Y.; Bareth, G. Estimating biomass of rice in farmers’ fields by red-edge indices. In Proceedings of the Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; pp. 1–4. [Google Scholar]
- Harrell, D.L.; Tubaña, B.S.; Walker, T.W.; Phillips, S.B. Estimating rice grain yield potential using normalized difference vegetation index. Agron. J. 2011, 103, 1717–1723. [Google Scholar] [CrossRef]
- Guo, Y.; Xiang, H.; Li, Z.; Ma, F.; Du, C. Prediction of Rice Yield in East China Based on Climate and Agronomic Traits Data Using Artificial Neural Networks and Partial Least Squares Regression. Agronomy 2021, 11, 282. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.S.; Choi, S.C.; Silva, R.R.; Kang, J.W.; Eom, J.H.; Kim, C. Case study: Estimation of sorghum biomass using digital image analysis with Canopeo. Biomass Bioenergy 2017, 105, 207–210. [Google Scholar] [CrossRef]
- Yellareddygari, S.K.R.; Gudmestad, N.C. Bland-Altman comparison of two methods for assessing severity of Verticillium wilt of potato. Crop Prot. 2017, 101, 68–75. [Google Scholar] [CrossRef]
- Da Silva, L.A.; Bressan, P.O.; Gonçalves, D.N.; Freitas, D.M.; Machado, B.B.; Gonçalves, W.N. Estimating soybean leaf defoliation using convolutional neural networks and synthetic images. Comput. Electron. Agric. 2019, 156, 360–368. [Google Scholar] [CrossRef]
- Yin, X.; Kropff, M.J.; McLaren, G.; Visperas, R.M. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 1995, 77, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Tang, L.; Lin, C.; Liu, L.; Wang, H.; Cao, W.; Zhu, Y. Modeling the effects of post-anthesis heat stress on rice phenology. Field Crops Res. 2015, 177, 26–36. [Google Scholar] [CrossRef]
- Samsul Huda, A.K.; Ghildyal, B.P.; Tomar, V.S.; Jain, R.C. Contribution of climatic variables in predicting rice yield. Agric. Meteorol. 1975, 15, 71–86. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Chen, K.; O’Leary, R.A.; Evans, F.H. A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool. Agric. Syst. 2019, 173, 140–150. [Google Scholar] [CrossRef]
- Evans, F.H.; Shen, J. Long-term hindcasts of wheat yield in fields using remotely sensed phenology, climate data and machine learning. Remote Sens. 2021, 13, 2435. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498728348. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 26 October 2021).
- Liu, K.; Li, Y.; Hu, H.; Zhou, L.; Xiao, X.; Yu, P. Estimating Rice Yield Based on Normalized Difference Vegetation Index at Heading Stage of Different Nitrogen Application Rates in Southeast of China. J. Environ. Agric. Sci. 2015, 2, 13. [Google Scholar]
- Zhou, X.; Zheng, H.B.; Xu, X.Q.; He, J.Y.; Ge, X.K.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Chang, K.W.; Shen, Y.; Lo, J.C. Predicting rice yield using canopy reflectance measured at booting stage. Agron. J. 2005, 97, 872–878. [Google Scholar] [CrossRef]
- Ali, A.M.; Thind, H.S.; Sharma, S.; Singh, V. Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field Crops Res. 2014, 161, 11–15. [Google Scholar] [CrossRef]
- Pandey, K.K.; Rai, V.N.; Sisodia, B.V.S.; Singh, S.K. Effect of Weather Variables on Rice Crop in Eastern Uttar Pradesh, India. Plant Arch. 2015, 15, 575–579. [Google Scholar]
- Das, B.; Nair, B.; Reddy, V.K.; Venkatesh, P. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Int. J. Biometeorol. 2018, 62, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Poulton, P.L.; Laing, A.; Poulton, P.L.; Dalgliesh, N.P.; Vang, S.; Charlesworth, P. Resilience of smallholder farmers in Cambodian lowland rice ecosystems in managing for future climate uncertainty. In Proceedings of the 17th ASA Conference, Hobart, Australia, 20–24 September 2015; pp. 1–4. [Google Scholar]
- Yao, Y.; Miao, Y.; Cao, Q.; Wang, H.; Gnyp, M.L.; Bareth, G.; Khosla, R.; Yang, W.; Liu, F.; Liu, C. In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4403–4413. [Google Scholar] [CrossRef]
- Stevens, G.; Wrather, A.; Rhine, M.; Vories, E.; Dunn, D. Predicting rice yield response to midseason nitrogen with plant area measurements. Agron. J. 2008, 100, 387–392. [Google Scholar] [CrossRef]
- Liu, X.; Ferguson, R.B.; Zheng, H.; Cao, Q.; Tian, Y.; Cao, W.; Zhu, Y. Using an active-optical sensor to develop an optimal NDVI dynamic model for high-yield rice production (Yangtze, China). Sensors 2017, 17, 672. [Google Scholar] [CrossRef] [PubMed]
- Marcillo, G.S.; Martin, N.F.; Diers, B.W.; Da Fonseca Santos, M.; Leles, E.P.; Chigeza, G.; Francischini, J.H. Implementation of a generalized additive model (Gam) for soybean maturity prediction in african environments. Agronomy 2021, 11, 1043. [Google Scholar] [CrossRef]
- Chen, Y.; Donohue, R.J.; McVicar, T.R.; Waldner, F.; Mata, G.; Ota, N.; Houshmandfar, A.; Dayal, K.; Lawes, R.A. Nationwide crop yield estimation based on photosynthesis and meteorological stress indices. Agric. For. Meteorol. 2020, 284, 107872. [Google Scholar] [CrossRef]
- Donohue, R.J.; Lawes, R.A.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Res. 2018, 227, 79–90. [Google Scholar] [CrossRef]
Experiment | Site/Season | Planting | PI Stage | PH Stage | Harvesting | Year | Reflectance Data Total (n = 169) |
---|---|---|---|---|---|---|---|
1 | KTL/EWS | 26 April | 26 June | 10 July | 9 July | 2018 | 30 |
2 | KTL/MWS | 24 September | 29 November | 13 December | 8 January | 2018 | 30 |
3 | SVC/EWS | 17 May | 17 July | 31 July | 4 September | 2018 | 24 |
4 | DBS/EWS | 20 July | 24 August | 9 September | 30 September | 2019 | 40 |
5 | KTL/EWS | 3 May | 1 July | 10 July | 31 August | 2019 | 45 |
Experiment | Mean Temperature PI (°C) | Mean Temperature PH (°C) | Mean Cumulative Rainfall PI (mm) | Mean Cumulative Rainfall PH (mm) |
---|---|---|---|---|
1 | 26.11 | 26.5 | 341.3 | 407.8 |
2 | 28.1 | 28.3 | 589.1 | 626.0 |
3 | 28.3 | 25.9 | 369.3 | 381.1 |
4 | 26.8 | 27.0 | 346.2 | 407.8 |
5 | 29.6 | 26.0 | 748.4 | 829.3 |
Yield (kg ha−1) | Total (n) | Max (kg ha−1) | Min (kg ha−1) | Mean (kg ha−1) | SD (kg ha−1) | CV (%) |
---|---|---|---|---|---|---|
Calibration | 169 | 9118.86 | 669.72 | 3051.58 | 1460.92 | 47.87 |
Validation | 60 | 8445.03 | 662.73 | 2807.32 | 1324.75 | 52.01 |
Experiment | Location | Growth Stage | Intercept | Predictor (x = Canopeo) | R2 | p-Value |
---|---|---|---|---|---|---|
1 | KTL | PI | 1157.48 | 11.718 | 0.14 | 0.04 * |
PH | 1640.75 | 4.717 | 0.03 | 0.37 | ||
2 | SVC | PI | 426.88 | 16.719 | 0.24 | 0.02 * |
PH | 216.49 | 18.29 | 0.20 | 0.06 * | ||
3 | KTL | PI | −8108.39 | 156.53 | 0.10 | 0.11 |
PH | −221.19 | 71.5 | 0.24 | 0.01 ** | ||
4 | DBS | PI | 4280.34 | −10.15 | 0.02 | 0.35 |
PH | 4784.33 | −20.95 | 0.10 | 0.09 | ||
5 | KTL | PI | 2492.65 | 8.069 | 0.03 | 0.22 |
PH | 2375.26 | 9.159 | 0.03 | 0.09 |
Experiment | Location | Growth Stage | Intercept (y) | Predictor (x = NDVI) | R2 | p-Value |
---|---|---|---|---|---|---|
1 | KTL | PI | −14.25 | 2739.63 | 0.14 | 0.042 * |
PH | −1845 | 6046 | 0.23 | 0.007 ** | ||
2 | SVC | PI | −1675 | 4570 | 0.23 | 0.019 * |
PH | −1655 | 4751 | 0.22 | 0.020 * | ||
3 | KTL | PI | 9710 | −7490 | 0.0033 | 0.762 |
PH | 850.7 | 5294.8 | 0.002 | 0.813 | ||
4 | DBSC | PI | 4900 | −1778 | 0.010 | 0.610 |
PH | 6760 | −5157 | 0.10 | 0.116 | ||
5 | KTL | PI | 1272 | 2834.3 | 0.20 | 0.004 ** |
PH | 2105.3 | 1305.1 | 0.04 | 0.187 |
Models | Predictors/Model Components | Deviance (%) | |
---|---|---|---|
PI | PH | ||
gam(yield ~ f(Canopeo, k = 3) + f(average temperature, k = 3) + f(cumulative rainfall, k = 3) | - | 62 | 65 |
f(Canopeo) | 5 | 5 | |
f(average temperature) | 62 | 65 | |
f(cumulative rainfall) | 35 | 56 | |
gam(yield ~ f(NDVI, k = 3) + f(average temperature, k = 3) + f(cumulative rainfall, k = 3) | - | 62 | 62 |
f(NDVI) | <0.1 | 3 | |
f(average temperature) | 62 | 62 | |
f(cumulative rainfall) | 30 | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onwuchekwa-Henry, C.B.; Ogtrop, F.V.; Roche, R.; Tan, D.K.Y. Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields. Agriculture 2022, 12, 130. https://doi.org/10.3390/agriculture12020130
Onwuchekwa-Henry CB, Ogtrop FV, Roche R, Tan DKY. Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields. Agriculture. 2022; 12(2):130. https://doi.org/10.3390/agriculture12020130
Chicago/Turabian StyleOnwuchekwa-Henry, Chinaza B., Floris Van Ogtrop, Rose Roche, and Daniel K. Y. Tan. 2022. "Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields" Agriculture 12, no. 2: 130. https://doi.org/10.3390/agriculture12020130
APA StyleOnwuchekwa-Henry, C. B., Ogtrop, F. V., Roche, R., & Tan, D. K. Y. (2022). Model for Predicting Rice Yield from Reflectance Index and Weather Variables in Lowland Rice Fields. Agriculture, 12(2), 130. https://doi.org/10.3390/agriculture12020130