A Digital Advisor Twin for Crop Nitrogen Management
Abstract
:1. Introduction
1.1. Scientific Challenges
1.2. Need for Research and Development
1.3. Purpose and Objective
- (1)
- to make advisor expertise on N fertilization digitally usable and multiply the advisory reach;
- (2)
- to develop a methodology to integrate, process, and retrieve information, data, and services concerning nutrient supply to crops, independent of the format and storage location of such information;
- (3)
- to develop a user interface in which the unified knowledge outputs are available in a web application, the Crop Portal;
- (4)
- to test and evaluate the DSS integrated into the Crop Portal.
- (1)
- consideration of organic fertilization;
- (2)
- division of N fertilization into several rates of mineral N application;
- (3)
- determination of amounts of fertilizer applied in one rate;
- (4)
- determination of application dates.
2. Materials and Methods
- Analysis of the requirements for the performance of the knowledge base:
- (a)
- group interviews with farmers and crop consultants (the crop consultants involved in this study are working with the LKP (Association for Bavarian farmers));
- (b)
- discussion of data relevant to the N fertilization in winter wheat and the possibility of using these to improve the knowledge base in the Crop Portal.
- Formalization of expert knowledge and development of the DSS to make sound and site-adapted recommendations that are usable for farmers:
- (a)
- reflection on advisory discussions;
- (b)
- annotation of implicit expert knowledge to make it machine-understandable;
- (c)
- concretization of subjective language and vocabulary used → specification of 16 fuzzy variables;
- (d)
- elaboration of consultant-specific decision trees;
- (e)
- storage of decision patterns in OWL ontologies (RDF graph database);
- (f)
- optimization of the prototype through several field tests.
- Evaluation of the Crop Portal by farmers and consultants in the 2019/20 season:
- (a)
- evaluation of the perceived pragmatic and hedonic quality using a standardized questionnaire;
- (b)
- field test to quantitatively and qualitatively rank the advisory performance of the ‘digital advisor twin’ in comparison with the opinions of advisors and farmers.
3. Results
3.1. Data Needs and Formalization of Consultant Knowledge
3.2. Concept of the DSS and the User Interface (UI)
3.3. Evaluation in the Field, Results, and Discussion of the User Survey
3.3.1. Evaluation of the UI
Questionnaire on the Crop Portal for the 1st RoA
Overall Evaluation of the 1st, 2nd, and 3rd RoAs
Questionnaire on the Crop Portal in General
- How would you use the application on your farm or integrate it into your daily operations?
- What information would still need to be added in your view?
- What do you understand by a DSS?
- Processing of different data related to the production process and the operations (e.g., plant protection products, weather, and restrictions for application);
- Knowledge-based advice that can be ‘accepted’ but also ‘edited’;
- Answering concrete questions in acute decision-making situations;
- Systems that help with legal compliance, display limits, and provide an overview of the daily work;
- Display of weather forecast, forecast models for diseases, pesticide database (e.g., display of requirements, license information);
- ‘A system that helps make decisions’;
- Farm-specific recommendations;
- Support in ‘extreme situations’ (e.g., heavy rainfall after fertilization and calculation of nutrient displacement, herbicide application on slopes, and waterside runoff); interactions between calculated and apparent (assessed by the farmer) conditions and on-site information;
- Claas CEMOS Automatics, an app for optimizing threshing units (semi-automatic).
- Which DSS do you use on your farm?
- ‘Perfect to back up one’s own opinion’;
- ‘Intensively advised farms could be advised even more precisely’;
- ‘In the case of the advisory hotline, such a consolidation of information, for example after registration of the caller by its farm number or an area number, would ease work considerably. However, if too many input variables have to be added manually first, the concept is not feasible under time and cost pressures (named cause: low willingness of farmers to pay for advice)’;
- ‘The Crop Portal would motivate many farmers to give data access, as they can immediately see the benefit in processing their data. However, farms would also need to be motivated to maintain their data in the medium term’;
- ‘Support for complex decisions, such as advice in water protection areas in compliance with various restrictions’;
- ‘The final decision should remain with the farmer’, cf. [42].
3.3.2. Evaluation of the Semi-Automated Fertilizer Application Recommendation
- ‘Beckeracker’: silage maize, as the previous crop, was calculated using the impact of a leaf crop (narrow C:N ratio). The differentiation that corn is treated as a stem crop was not modeled. This resulted in a surcharge of 15 kg N ha−1.
- ‘Vogler Schlag’: the preceding crop, sugar beet, was discussed with consultants and farmers. Subsequently, but without effect on the results in the test year, a surcharge of 15 kg N ha−1 was calculated for previous crops of sugar beet and yields of more than 100 dt ha−1.
Causes of Discrepancies between Crop Portal and Expert Opinion (Consultant/Farmer) in the Field
- The recommendations on the basis of decision tree A for the 1st RoA resulted in a postponement of the 1st application or a combination with the 2nd application at the main stage of tillering in three fields. Consequently, the 1st application was omitted and the comparison was, accordingly, drastic as it was a comparison of the advisor’s or farmer’s application with 0 kg N ha−1. This pooling resulted in a continuing discrepancy for the 2nd RoA.
- Similarly, discrepancies were found in crop stands that already had a high N supply (high humus content, many years of organic fertilization). For a crop stand with above-average development, the consultant and the farmer determined a low 1st fertilization rate (30 kg N ha−1). Such extreme sites were not considered in decision tree A for the 1st application. The suggested N amount was 70 kg N ha−1. For decision tree B, this problem arose for the 2nd RoA since only a discharge of 10 kg N ha−1 was deducted for extremely lush crop stands.
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Details on the Parameters in the Decision Tree for the 1st Rate of Application (RoA)
- (1)
- Warming properties of the site
- (2)
- Previous crop: Stem or leaf crop
- (3)
- Target spikes per m2
- (4)
- Minimum and maximum amounts of fertilizer applied
References
- Zhai, Z.; Martínez, J.F.; Beltran, V.; Martínez, N.L. Decision support systems for agriculture 4.0: Survey and challenges. Comput. Electron. Agric. 2020, 170, 105256. [Google Scholar] [CrossRef]
- Naud, O.; Taylor, J.; Colizzi, L.; Giroudeau, R.; Guillaume, S.; Bourreau, E.; Crestey, T.; Tisseyre, B. Support to decision-making. In Agricultural Internet of Things and Decision Support for Precision Smart Farming; Castrignanò, A., Buttafuoco, G., Khosla, R., Mouazen, A.M., Moshou, D., Naud, O., Eds.; Academic Press: London, UK, 2020; pp. 183–224. ISBN 978-0-12-818373-1. [Google Scholar]
- Gutiérrez, F.; Htun, N.N.; Schlenz, F.; Kasimati, A.; Verbert, K. A review of visualisations in agricultural decision support systems: An HCI perspective. Comput. Electron. Agric. 2019, 163, 104844. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Boston, MA, USA, 2020; ISBN 978-0-13-461099-3. [Google Scholar]
- Curry, N.; Kirwan, J. The Role of Tacit Knowledge in Developing Networks for Sustainable Agriculture. Sociol. Rural. 2014, 54, 341–361. [Google Scholar] [CrossRef]
- McCown, R.L. A cognitive systems framework to inform delivery of analytic support for farmers’ intuitive management under seasonal climatic variability. Agric. Syst. 2012, 105, 7–20. [Google Scholar] [CrossRef]
- Polanyi, M. The Tacit Dimension; University of Chicago Press: Chicago, IL, USA, 1966. [Google Scholar]
- Rubinstein, A. Modeling Bounded Rationality, 3rd ed.; MIT Press: Cambridge, MA, USA, 2002; ISBN 0-262-68100-5. [Google Scholar]
- Liebe, U.; Preisendörfer, P. Rational Choice Theory and the Environment: Variants, Applications and New Trends. In Environmental Sociology: European Perspectives and Interdisciplinary Challenges; Gross, M., Heinrichs, H., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-8730-0. [Google Scholar]
- German Environment Agency. Indicator: Agricultural Nitrogen Surplus. Available online: https://www.umweltbundesamt.de/en/data/environmental-indicators/indicator-agricultural-nitrogen-surplus#at-a-glance (accessed on 25 October 2021).
- Federal Ministry of Food and Agriculture; Ministry for the Environment, Nature Conservation and Nuclear Safety. Nitratbericht 2020. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Binnengewaesser/nitratbericht_2020_bf.pdf (accessed on 27 November 2021).
- 365FarmNet. The Software That Ploughs. Available online: https://www.365farmnet.com/en/ (accessed on 28 April 2020).
- FarmFacts. Simple Documentation. Available online: https://www.nextfarming.com/solutions/simple-documentation/ (accessed on 28 April 2020).
- YARA. Atfarm. Available online: https://www.at.farm (accessed on 11 May 2020).
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Offenberger, K.; Fischer, K.; Wendland, M.; Sperger, C.; Brandl, M.; Kavka, A. Düngeberatungssystem Stickstoff: DSN 2020; Landesanstalt für Landwirtschaft (LfL): Freising, Germany, 2019.
- Villalobos, F.J.; Delgado, A.; López-Bernal, Á.; Quemada, M. FertiliCalc: A Decision Support System for Fertilizer Management. Int. J. Plant. Prod. 2020, 14, 299–308. [Google Scholar] [CrossRef]
- Gandorfer, M.; Schleicher, S.; Erdle, K. Barriers to Adoption of Smart Farming Technologies in Germany. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Schulze Schwering, D.; Lemken, D. Totally Digital? Adoption of Digital Farm Management Information Systems. In Lecture Notes in Informatics (LNI): 40. GIL-Jahrestagung—Digitalisierung für Mensch, Umwelt und Tier; Gesellschaft für Informatik: Bonn, Germany, 2020; pp. 295–300. [Google Scholar]
- Roosen, J.; Groß, S. Digitalisierung in LAND-und Ernährungswirtschaft: Studie; Vereinigung der Bayerischen Wirtschaft e.V. (vbw): München, Germany, 2017. [Google Scholar]
- Rose, D.C.; Parker, C.; Fodey, J.; Park, C.; Sutherland, W.; Dicks, L. Involving stakeholders in agricultural decision support systems: Improving user-centred design. Int. J. Agric. Manag. 2018, 6, 80–89. [Google Scholar] [CrossRef]
- Hochschule Weihenstephan-Triesdorf/HSWT. Bedarf an Beratungs-und Dienstleistungsangeboten in der landwirtschaftlichen pflanzlichen Erzeugung in Bayern: Marktforschungsstudie (Market Research Study) für das; Landeskuratorium für pflanzliche Erzeugung in Bayern e.V. (LKP): Freising, Germany, 2016. [Google Scholar]
- Beierle, C.; Kern-Isberner, G. Methoden Wissensbasierter Systeme: Grundlagen, Algorithmen, Anwendungen, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-658-27083-4. [Google Scholar]
- Gottlob, G.; Frühwirth, T.; Horn, W. Expertensysteme; Springer: Vienna, Austria, 1990; ISBN 978-3-7091-9094-4. [Google Scholar]
- Materia, V.C.; Giarè, F.; Klerkx, L. Increasing Knowledge Flows between the Agricultural Research and Advisory System in Italy: Combining Virtual and Non-virtual Interaction in Communities of Practice. J. Agr. Educ. Ext. 2015, 21, 203–218. [Google Scholar] [CrossRef]
- Norton, G.W.; Alwang, J. Changes in Agricultural Extension and Implications for Farmer Adoption of New Practices. Appl. Econ. Perspect. Policy 2020, 42, 8–20. [Google Scholar] [CrossRef]
- Simon, H.A. A Behavioral Model of Rational Choice. Q. J. Econ. 1955, 69, 99–118. [Google Scholar] [CrossRef]
- Proctor, A.; Donaldson, A.; Phillipson, J.; Lowe, P. Field Expertise in Rural Land Management. Environ. Plan A 2012, 44, 1696–1711. [Google Scholar] [CrossRef] [Green Version]
- Weckesser, F.; Hartmann, A.; Beck, M.; Peisl, S. Entscheidungsunterstützung durch Datenvernetzung—Ein Fallbeispiel der Pflanzenbauberatung. In Lecture Notes in Informatics (LNI): 40. GIL-Jahrestagung—Digitalisierung für Mensch, Umwelt und Tier; Gesellschaft für Informatik: Bonn, Germany, 2020; pp. 337–342. ISBN 978-3-88579-693-0. [Google Scholar]
- Vanwindekens, F.M.; Stilmant, D.; Baret, P.V. Development of a broadened cognitive mapping approach for analysing systems of practices in social-ecological systems. Ecol. Modell. 2013, 250, 352–362. [Google Scholar] [CrossRef]
- Federal Office for Agriculture and Food. Düngeverordnung 2020 (German Fertilizer Ordinance). Available online: https://www.ble-medienservice.de/frontend/esddownload/index/id/1515/on/1756/act/dl (accessed on 18 January 2021).
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Kalivas, D.; Hatzichristos, T. Decision support system for nitrogen fertilization using fuzzy theory. Comput. Electron. Agric. 2011, 78, 130–139. [Google Scholar] [CrossRef]
- Vásquez, R.P.; Aguilar-Lasserre, A.A.; López-Segura, M.V.; Rivero, L.C.; Rodríguez-Duran, A.A.; Rojas-Luna, M.A. Expert system based on a fuzzy logic model for the analysis of the sustainable livestock production dynamic system. Comput. Electron. Agric. 2019, 161, 104–120. [Google Scholar] [CrossRef]
- Kessler, I.; Perzylo, A.; Rickert, M. Ontology-Based Decision Support System for the Nitrogen Fertilization of Winter Wheat. In Metadata and Semantic Research; Garoufallou, E., Ovalle-Perandones, M.-A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 245–256. ISBN 978-3-030-71902-9. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018. [Google Scholar]
- Weckesser, F.; Kessler, I.; Perzylo, A.; Hartmann, A.; Rickert, M.; Beck, M.; Peisl, S. Abschlussbericht zum Projekt FarmExpert 4.0—Architektur eines unabhängigen Expertennetzes für die Landwirtschaft für das Zeitalter der Digitalisierung; Hochschule Weihenstephan-Triesdorf (HSWT), Fortiss—Landesforschungsinstitut des Freistaats Bayern für softwareintensive Systeme; Landeskuratorium für pflanzliche Erzeugung in Bayern e.V.: München, Germany, 2020. [Google Scholar]
- Roßberg, D.; Jörg, E.; Falke, K. SIMONTO—Ein neues Ortogenesemodell für Wintergetreide und Winterraps. Nachrichtenbl. Deut. Pflanzenschutzd. 2005, 57, 74–80. [Google Scholar]
- Roßberg, D.; Michel, V.; Graf, R.; Neukampf, R. Definition von Boden-Klima-Räumen für die Bundesrepublik Deutschland: Definition of soil-climate-areas for Germany. Nachr. Dtsch. Pflanzenschutzd. 2007, 59, 155–161. [Google Scholar]
- Team UEQ. User Experience Questionnaire. Available online: https://www.ueq-online.org/ (accessed on 30 June 2020).
- YARA. N-Tester: Instruction Manual. Available online: https://www.yara.my/contentassets/6d5ba39b1a364a33be1e4e6b6b2a2be1/n-tester-instruction-manual.pdf/ (accessed on 20 July 2020).
- Wood, B.A.; Blair, H.T.; Gray, D.I.; Kemp, P.D.; Kenyon, P.R.; Morris, S.T.; Sewell, A.M. Agricultural science in the wild: A social network analysis of farmer knowledge exchange. PLoS ONE 2014, 9, e105203. [Google Scholar] [CrossRef] [Green Version]
- Janssen, S.J.C.; Porter, C.H.; Moore, A.D.; Athanasiadis, I.N.; Foster, I.; Jones, J.W.; Antle, J.M. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agric. Syst. 2017, 155, 200–212. [Google Scholar] [CrossRef]
- Clavel, L.; Soudais, J.; Baudet, D.; Leenhardt, D. Integrating expert knowledge and quantitative information for mapping cropping systems. Land Use Policy 2011, 28, 57–65. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Mahmood, F.; Wery, J.; Hussain, S.; Shahzad, T.; Ashraf, M.A.; Therond, O.; Belhouchette, H. Using expert knowledge data to validate crop models on local situation data. Arch. Agron. Soil Sci. 2016, 62, 217–234. [Google Scholar] [CrossRef] [Green Version]
- YARA. N-Sensor ALS—To Variably Apply Nitrogen. Available online: https://www.yara.co.uk/crop-nutrition/farmers-toolbox/n-sensor/ (accessed on 11 August 2020).
- Trimble. GreenSeeker System. Available online: https://agriculture.trimble.com/product/greenseeker-system/ (accessed on 7 August 2020).
- Whelan, B. Site-Specific Crop Management. In Pedometrics; McBratney, A.B., Minasny, B., Stockmann, U., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 597–622. ISBN 978-3-319-63437-1. [Google Scholar]
- Garvert, H. Determinanten der Pachtpreise in Deutschland—Biogasförderung und Direktzahlungen im Fokus. Ph.D Thesis, Justus-Liebig-Universität Gießen, Gießen, Germany, 2017. [Google Scholar]
- Zenger, X.; Friebe, R. Agrarstrukturentwicklung in Bayern: IBA-Agrarstrukturbericht 2014; Bayerische Landesanstalt für Landwirtschaft (LfL): Freising, Germany, 2015.
- Bavarian State Ministry of Food, Agriculture and Forestry. Bayerischer Agrarbericht 2020. Available online: https://www.agrarbericht.bayern.de/politik-strategien/index.html (accessed on 30 November 2020).
- Dessart, F.J.; Barreiro-Hurlé, J.; van Bavel, R. Behavioural factors affecting the adoption of sustainable farming practices: A policy-oriented review. Eur. Rev. Agric. Econ. 2019, 46, 417–471. [Google Scholar] [CrossRef] [Green Version]
- McCown, R.L.; Carberry, P.S.; Dalgliesh, N.P.; Foale, M.A.; Hochman, Z. Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agric. Syst. 2012, 106, 33–45. [Google Scholar] [CrossRef]
- Siebrecht, N. Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation. Sustainability 2020, 12, 3853. [Google Scholar] [CrossRef]
- Hülsbergen, K.-J.; Rahmann, G. (Eds.) Thünen Report 8: Klimawirkungen und Nachhaltigkeit ökologischer und konventioneller Betriebssysteme—Untersuchungen in einem Netzwerk von Pilotbetrieben; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2013; ISBN 978-3-86576-108-8. [Google Scholar]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wageningen J. Life Sci. 2019, 90-91, 100315. [Google Scholar] [CrossRef]
- Weckesser, F.; Leßke, F.; Luthardt, M.; Hülsbergen, K.-J. Conceptual Design of a Comprehensive Farm Nitrogen Management System. Agronomy 2021, 11, 2501. [Google Scholar] [CrossRef]
- Klerkx, L.; Proctor, A. Beyond fragmentation and disconnect: Networks for knowledge exchange in the English land management advisory system. Land Use Policy 2013, 30, 13–24. [Google Scholar] [CrossRef]
- Bliss, K.; Padel, S.; Cullen, B.; Ducottet, C.; Mullender, S.; Rasmussen, I.A.; Moeskops, B. Exchanging knowledge to improve organic arable farming: An evaluation of knowledge exchange tools with farmer groups across Europe. Org. Agr. 2018, 9, 383–398. [Google Scholar] [CrossRef]
- Rose, D.C.; Sutherland, W.J.; Parker, C.; Lobley, M.; Winter, M.; Morris, C.; Twining, S.; Ffoulkes, C.; Amano, T.; Dicks, L.V. Decision support tools for agriculture: Towards effective design and delivery. Agric. Syst. 2016, 149, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz-Carpena, R.; Rosenzweig, C.; et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric. Syst. 2017, 155, 255–268. [Google Scholar] [CrossRef]
- Ayre, M.; Mc Collum, V.; Waters, W.; Samson, P.; Curro, A.; Nettle, R.; Paschen, J.-A.; King, B.; Reichelt, N. Supporting and practising digital innovation with advisers in smart farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 100302. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Dela Rue, B. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS Wagening. J. Life Sci. 2019, 90–91, 100298. [Google Scholar] [CrossRef]
- Hera, U.; Rötzer, T.; Zimmermann, L.; Schulz, C.; Maier, H.; Weber, H.; Kölling, C. Klima en Détail—Neue Hochaufgelöste Klimakarten zur klimatischen Regionalisierung Bayerns; LWF Aktuell: Freising, Germany, 2011. [Google Scholar]
- Federal Plant Variety Office. Beschreibende Sortenliste Getreide 2020. Available online: https://www.bundessortenamt.de/bsa/media/Files/BSL/bsl_getreide_2020.pdf (accessed on 25 November 2021).
Input-Variable Name * | Rate of Application No. | Primary Data Source ** | |
---|---|---|---|
Advisor A | Advisor B | ||
Variety | 1 | 1 | farmer |
Previous crop | 1 | 1 | farmer |
Expected yield | - | 3 | farmer |
By-product harvest pre-crop | - | 2 | farmer |
Climate (cool/warm) | 1 | 1 | farmer/climate map |
14-days temperature prediction | 1 | - | farmer/public data |
Soil mineral N (SMN) content | 1 | 1 | farmer |
N mobilization rate | - | 2 | farmer |
N supply crop stand | - | 2 | farmer |
Crop stand density (spikes/m2) | 2 | 1, 2 | farmer |
Risk of crop lodging | 3 | - | farmer |
Quality target (protein) | - | 3 | farmer |
Application of organic fertilizer | 1, 2, 3 | 1, 2, 3 | farmer |
Application of mineral fertilizer | 2, 3 | 2, 3 | farmer |
Legume share in crop rotation | 2, 3 | - | farmer |
Soil texture | 1 | - | public data |
Land use restrictions | 1, 2, 3 | - | public data/farmer |
Parameter | Value | Sur-/Discharge (kg N ha−1) |
---|---|---|
(1) Warming of the field | ≤3.9 °C | +10 |
>3.9 °C | 0 | |
(2) Previous crop type | stem | +15 |
leaf | 0 | |
(3) Target spikes per m2 variety: Faustus | 520 (−20%) | +10 |
650 | 0 | |
780 (+20%) | −10 |
Rate of Application | 1st | 2nd | 3rd | |||
---|---|---|---|---|---|---|
Decision based on advisor | A | B | A | B | A | B |
Deviation (kg N ha−1) | 15 | 5.4 | 7.5 | 16.2 | 15.8 | 10 |
Advisor | Field | Deviation |
---|---|---|
Name | Name | (kg N ha−1) |
Advisor A | Dostlerfeld | −25 |
Bahn | 0 | |
AB2 | −28 | |
AB1 | −28 | |
Spitz | 7 | |
Pfarrpacht | −18 | |
Kelleracker | −28 | |
Bannstücke | −8 | |
Advisor B | Stadlacker | −1 |
Acker 1 | −5 | |
Acker 2 | 5 | |
Straßfeld | −2 | |
Steinbühl | −2 | |
Heide | −2 | |
Beckeracker | −12 | |
Voglerschlag | −20 | |
Exlpoint | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weckesser, F.; Beck, M.; Hülsbergen, K.-J.; Peisl, S. A Digital Advisor Twin for Crop Nitrogen Management. Agriculture 2022, 12, 302. https://doi.org/10.3390/agriculture12020302
Weckesser F, Beck M, Hülsbergen K-J, Peisl S. A Digital Advisor Twin for Crop Nitrogen Management. Agriculture. 2022; 12(2):302. https://doi.org/10.3390/agriculture12020302
Chicago/Turabian StyleWeckesser, Fabian, Michael Beck, Kurt-Jürgen Hülsbergen, and Sebastian Peisl. 2022. "A Digital Advisor Twin for Crop Nitrogen Management" Agriculture 12, no. 2: 302. https://doi.org/10.3390/agriculture12020302
APA StyleWeckesser, F., Beck, M., Hülsbergen, K. -J., & Peisl, S. (2022). A Digital Advisor Twin for Crop Nitrogen Management. Agriculture, 12(2), 302. https://doi.org/10.3390/agriculture12020302