Effect of Sainfoin (Onobrychis viciifolia) Pellets on Rumen Microbiome and Histopathology in Lambs Exposed to Gastrointestinal Nematodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Diets, and Experimental Design
2.3. Experiment In Vitro
2.4. Chemical Analysis of the Dietary Substrates
2.5. Analysis of Bioactive Compounds
2.6. Basic Ruminal Fermentation Analysis
2.7. Rumen Microbial Quantification
2.8. Hematological Parameters
2.9. Histopathology
2.10. Statistical Analysis
3. Results
3.1. Phytochemicals
3.2. Ruminal Fermentation In Vitro
3.3. Ruminal Fermentation and Microbiota in the Lambs
3.4. Hematological Parameters
3.5. Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houdijk, J.G.M.; Tolkamp, B.J.; Rooke, J.A.; Hutchings, M.R. Animal health and greenhouse gas intensity: The paradox of periparturient parasitism. Int. J. Parasitol. 2017, 47, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.J.; Smith, L.A.; Houdijk, J.G.M.; Athanasiadou, S.; Hutchings, M.R. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 2018, 48, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Mravčáková, D.; Váradyová, Z.; Kopčáková, A.; Čobanová, K.; Grešáková, Ľ.; Kišidayová, S.; Babják, M.; Urda Dolinská, M.; Dvorožňáková, E.; Königová, A.; et al. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019, 15, 302. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Taube, F.; Malisch, C.S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 2021, 13, 2743. [Google Scholar] [CrossRef]
- Hassan, F.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.; Khan, M.S.; Shahid, S.; Yang, C. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Front. Vet. Sci. 2020, 7, 575801. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Quijada, J.; Fryganas, C.; Ropiak, H.M.; Ramsay, A.; Mueller-Harvey, I.; Hoste, H. Anthelmintic activities against Haemonchus contortus or Trichostrongylus colubriformis from small ruminants are influenced by structural features of condensed tannins. J. Agric. Food Chem. 2015, 63, 6346–6354. [Google Scholar] [CrossRef] [Green Version]
- Kommuru, D.S.; Barker, T.; Desai, S.; Burke, J.M.; Ramsay, A.; Mueller-Harvey, I.; Miller, J.E.; Mosjidis, J.A.; Kamisetti, N.; Terrill, T.H. Use of pelleted sericea lespedeza (Lespedeza cuneata) for natural control of coccidia and gastrointestinal nematodes in weaned goats. Vet. Parasitol. 2014, 204, 191–198. [Google Scholar] [CrossRef]
- Mechineni, A.; Kommuru, D.S.; Gujja, S.; Mosjidis, J.A.; Miller, J.E.; Burke, J.M.; Ramsay, A.; Mueller-Harvey, I.; Kannan, G.; Lee, J.H.; et al. Effect of fall-grazed sericea lespedeza (Lespedeza cuneata) on gastrointestinal nematode infections of growing goats. Vet. Parasitol. 2014, 204, 221–228. [Google Scholar] [CrossRef]
- Hatew, B.; Stringano, E.; Mueller-Harvey, I.; Hendriks, W.H.; Carbonero, C.H.; Smith, L.M.J.; Pellikaan, W.F. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 2016, 100, 348–360. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Ulyatt, M.J.; John, A.; Fisher, M.T. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. Br. J. Nutr. 1987, 57, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Waghorn, G.C.; McNabb, W.C.; Barry, T.N.; Hedley, M.J.; Shelton, I.D. Effect of condensed tannins in Lotus corniculatus upon the digestion of methionine and cysteine in the small intestine of sheep. J. Agric. Sci. 1996, 127, 413–421. [Google Scholar] [CrossRef]
- Brunet, S.; Fourquaux, I.; Hoste, H. Ultrastructural changes in the third-stage, infective larvae of ruminant nematodes treated with sainfoin (Onobrychis viciifolia) extract. Parasitol. Int. 2011, 60, 419–424. [Google Scholar] [CrossRef]
- Desrues, O.; Peña-Espinoza, M.; Hansen, T.V.; Enemark, H.L.; Thamsborg, S.M. Anti-parasitic activity of pelleted sainfoin (Onobrychis viciifolia) against Ostertagia ostertagi and Cooperia oncophora in calves. Parasit. Vectors 2016, 9, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrau, E.; Fabre, N.; Fouraste, I.; Hoste, H. Effect of bioactive compounds from sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: Role of tannins and flavonol glycosides. Parasitology 2005, 131, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 127–134. [Google Scholar] [CrossRef]
- Gaudin, E.; Simon, M.; Quijada, J.; Schelcher, F.; Sutra, J.-F.; Lespine, A.; Hoste, H. Efficacy of sainfoin (Onobrychis viciifolia) pellets against multi resistant Haemonchus contortus and interaction with oral ivermectin: Implications for on-farm control. Vet. Parasitol. 2016, 227, 122–129. [Google Scholar] [CrossRef]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Čobanová, K.; Kišidayová, S.; Cieslak, A.; Slusarczyk, S.; Váradyová, Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1219–1232. [Google Scholar] [CrossRef]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Kišidayová, S.; Cieslak, A.; Szumacher-Strabel, M.; Huang, H.; Kolodziejski, P.; Lukomska, A.; Slusarczyk, S.; et al. Impact of zinc and/or herbal mixture on ruminal fermentation, microbiota, and histopathology in lambs. Front. Vet. Sci. 2021, 8, 630971. [Google Scholar] [CrossRef]
- Váradyová, Z.; Mravčáková, D.; Babják, M.; Bryszak, M.; Grešáková, Ľ.; Čobanová, K.; Kišidayová, S.; Plachá, I.; Königová, A.; Cieslak, A.; et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018, 14, 78. [Google Scholar] [CrossRef]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- European Commission (EC). Council Regulation (EC) 1099/2009 of 24 September 2009 on the Protection of Animals at the Time of Killing. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32009R1099 (accessed on 18 November 2009).
- Yánez-Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- McDougall, E.I. Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochem. J. 1948, 43, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, W. Official Methods of AOAC International, 17th ed.; Association of Official Analytical Chemists (AOAC) International: Gaithersburg, MD, USA; Washington, DC, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mravčáková, D.; Komáromyová, M.; Babják, M.; Urda Dolinská, M.; Königová, A.; Petrič, D.; Čobanová, K.; Ślusarczyk, S.; Cieslak, A.; Várady, M.; et al. Anthelmintic activity of wormwood (Artemisia absinthium L.) and mallow (Malva sylvestris L.) against Haemonchus contortus in sheep. Animals 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Váradyová, Z.; Kišidayová, S.; Čobanová, K.; Grešákova, Ľ.; Babják, M.; Königova, A.; Urda Dolinská, M.; Várady, M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin. Res. 2017, 151, 124–132. [Google Scholar] [CrossRef]
- Wolin, M.J. A Theoretical Rumen Fermentation Balance. J. Dairy Sci. 1960, 43, 1452–1459. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Williams, A.G.; Coleman, G.S. The Rumen Protozoa, 1st ed.; Springer: New York, NY, USA, 1992; pp. 1–425. [Google Scholar]
- Szulc, P.; Mravčáková, D.; Szumacher-Strabel, M.; Váradyová, Z.; Várady, M.; Čobanová, K.; Syahrulawal, L.; Patra, A.K.; Cieslak, A. Ruminal fermentation, microbial population and lipid metabolism in gastrointestinal nematode-infected lambs fed a diet supplemented with herbal mixtures. PLoS ONE 2020, 15, e0231516. [Google Scholar] [CrossRef] [Green Version]
- Henderson, G.; Cox, F.; Kittelmann, S.; Miri, V.H.; Zethof, M.; Noel, S.J.; Waghorn, G.C.; Janssen, P.H. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS ONE 2013, 8, e74787. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 2007, 75, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Potu, R.B.; AbuGhazaleh, A.A.; Hastings, D.; Jones, K.; Ibrahim, S.A. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition. J. Microbiol. 2011, 49, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Penner, G.B.; Hernandez-Sanabria, E.; Oba, M.; Guan, L.L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 2009, 107, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Wang, R.F.; Beggs, M.L.; Erickson, B.D.; Cerniglia, C.E. DNA microarray analysis of predominant human intestinal bacteria in fecal samples. Mol. Cell Probes. 2004, 18, 223–234. [Google Scholar] [CrossRef]
- Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba, S. Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunol. Med. Microbiol. 2003, 39, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Harvey, I.; Bee, G.; Dohme-Meier, F.; Hoste, H.; Karonen, M.; Kölliker, R.; Lüscher, A.; Niderkorn, V.; Pellikaan, W.F.; Salminen, J.-P.; et al. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 2019, 59, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Niderkorn, V.; Jayanegara, A. Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Malisch, C.S.; Lüscher, A.; Baert, N.; Engström, M.T.; Studer, B.; Fryganas, C.; Suter, D.; Mueller-Harvey, I.; Salminen, J.-P. Large variability of proanthocyanidin content and composition in sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 2015, 63, 10234–10242. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; McAllister, T.A.; Acharya, S. Condensed tannins in sainfoin: Composition, concentration, and effects on nutritive and feeding value of sainfoin forage. Crop Sci. 2015, 55, 13–22. [Google Scholar] [CrossRef]
- Rivaroli, D.; Prunier, A.; Meteau, K.; do Prado, I.N.; Prache, S. Tannin-rich sainfoin pellet supplementation reduces fat volatile indoles content and delays digestive parasitism in lambs grazing alfalfa. Animal 2019, 13, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Hoste, H.; Torres-Acosta, J.F.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santra, A.; Saikia, A.; Baruah, K.K. Scope of rumen manipulation using medicinal plants to mitigate methane production. J. Pharmacogn. 2012, 3, 115–120. [Google Scholar]
- Cui, K.; Guo, X.D.; Tu, Y.; Zhang, N.F.; Ma, T.; Diao, Q.Y. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Leiber, F.; Kunz, C.; Kreuzer, M. Influence of different morphological parts of buckwheat (Fagopyrum esculentum) and its major secondary metabolite rutin on rumen fermentation in vitro. Czech J. Anim. Sci. 2012, 57, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Oskoueian, E.; Abdullah, N.; Oskoueian, A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed. Res. Int. 2013, 2013, 349129. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.M.; Blank, R.; Zorn, F.; Wein, S.; Metges, C.C.; Wolffram, S. Ruminal degradation of quercetin and its influence on fermentation in ruminants. J. Dairy Sci. 2015, 98, 5688–5698. [Google Scholar] [CrossRef] [Green Version]
- Stoldt, A.-K.; Derno, M.; Das, G.; Weitzel, J.M.; Wolffram, S.; Metges, C.C. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. J. Dairy Sci. 2016, 99, 2161–2168. [Google Scholar] [CrossRef] [Green Version]
- Guglielmelli, A.; Calabro, S.; Primi, R.; Carone, F.; Cutrignelli, M.I.; Tudisco, R.; Piccolo, G.; Ronchi, B.; Danieli, P.P. In vitro fermentation patterns and methane production of sainfoin (Onobrychis viciifolia Scop.) hay with different condensed tannin contents. Grass Forage Sci. 2011, 66, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez Hernáez, J.; Cerón Cucchi, M.E.; Cravero, S.; Martinez, M.C.; Gonzalez, S.; Puebla, A.; Dopazo, J.; Farber, M.; Paniego, N.; Rivarola, M. The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microb. Genom. 2018, 4, e000216. [Google Scholar] [CrossRef] [PubMed]
- Broudiscou, L.-P.; Lassalas, B. Effects of Lavandula officinalis and Equisetum arvense dry extracts and isoquercitrin on the fermentation of diets varying in forage contents by rumen microorganisms in batch culture. Reprod. Nutr. Dev. 2000, 40, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodas, R.; López, S.; Fernández, M.; García-González, R.; Rodríguez, A.B.; Wallace, R.J.; González, J.S. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 2008, 145, 245–258. [Google Scholar] [CrossRef]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saminathan, M.; Gan, H.M.; Abdullah, N.; Wong, C.M.V.L.; Ramiah, S.K.; Tan, H.Y.; Sieo, C.C.; Ho, Y.W. Changes in rumen protozoal community by condensed tannin fractions of different molecular weights from a Leucaena leucocephala hybrid in vitro. J. Appl. Microbiol. 2017, 123, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Salami, S.A.; Valenti, B.; Bella, M.; O’Grady, M.N.; Luciano, G.; Kerry, J.P.; Jones, E.; Priolo, A.; Newbold, C.J. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. 2018, 94, 61. [Google Scholar] [CrossRef]
- Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Romano-Muñoz, J.L.; Solorio-Sánchez, F.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals 2020, 10, 300. [Google Scholar] [CrossRef] [Green Version]
- MacAdam, J.W.; Villalba, J.J. Beneficial effects of temperate forage legumes that contain condensed tannins. Agriculture 2015, 5, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Komáromyová, M.; Mravčáková, D.; Petrič, D.; Kucková, K.; Babják, M.; Dolinská, M.U.; Königová, A.; Maďarová, M.; Pruszyńska-Oszmałek, E.; Cieslak, A.; et al. Effects of medicinal plants and organic selenium against ovine haemonchosis. Animals 2021, 11, 1319. [Google Scholar] [CrossRef]
- Cériac, S.; Jayles, C.; Arquet, R.; Feuillet, D.; Félicité, Y.; Archimède, H.; Bambou, J.C. The nutritional status affects the complete blood count of goats experimentally infected with Haemonchus contortus. BMC Vet. Res. 2017, 13, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Acosta, J.F.J.; Jacobs, D.E.; Aguilar-Caballero, A.; Sandoval-Castro, C.; Cob-Galera, L.; May-Martínez, M. Improving resilience against natural gastrointestinal nematode infections in browsing kids during the dry season in tropical Mexico. Vet. Parasitol. 2006, 135, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Eberle, J.U.; Voehringer, D. Role of basophils in protective immunity to parasitic infections. Semin. Immunopathol. 2016, 38, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Lins, J.G.G.; Almeida, F.A.; Amarante, A.F.T. Haematological variables of Santa Ines and Ile De France suckling lambs: Influence of Haemonchus contortus infection. Pesq. Vet. Bras. 2020, 40, 882–891. [Google Scholar] [CrossRef]
- Stear, M.J.; Bishop, S.C.; Henderson, N.G.; Scott, I. A key mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Anim. Health Res. Rev. 2003, 4, 45–52. [Google Scholar] [CrossRef]
- Blanchard, J.L.; Gallina, A.M.; Wescott, R.B. Pathologic changes in lambs with Ostertagia circumcincta infections associated with decreased infectivity of Haemonchus contortus. Am. J. Vet. Res. 1986, 47, 309–314. [Google Scholar]
- Mravčáková, D.; Sobczak-Filipiak, M.; Váradyová, Z.; Kucková, K.; Čobanová, K.; Maršík, P.; Tauchen, J.; Vadlejch, J.; Mickiewicz, M.; Kaba, J.; et al. Effect of Artemisia absinthium and Malva sylvestris on antioxidant parameters and abomasal histopathology in lambs experimentally infected with Haemonchus contortus. Animals 2021, 11, 462. [Google Scholar] [CrossRef]
Substrate | DM (g/kg) | NDF (g/kg DM) | ADF (g/kg DM) | CP (g/kg DM) | N (g/kg DM) | Ash (g/kg DM) |
---|---|---|---|---|---|---|
Meadow hay | 885 | 640 | 423 | 84 | 14 | 84 |
Concentrate | 888 | 231 | 130 | 211 | 34 | 104 |
SFPs | 918 | 460 | 357 | 121 | 19 | 100 |
No. | RT (min) | UV (nm) | m/z [M-H]− | MS 2 Main Ion | MS 2 Fragments | Formula | Compound | mg/g DM |
---|---|---|---|---|---|---|---|---|
1 | 2.4 | 261,296 | 153.018 | 109.0291 | C7H6O4 | 3,5-Dihydroxybenzoic acid | 0.26 | |
2 | 2.6 | 261,296 | 153.018 | 109.0291 | C7H6O4 | 2,4-Dihydroxybenzoic acid | 0.29 | |
3 | 4.6 | 245sh,348 | 175.0601 | 157.0488 | 131,115 | C7H12O5 | 3-Isopropylmalic acid | 0.28 |
4 | 5.1 | 248sh,326 | 353.0884 | 191.0557 | C16H18O9 | Trans-5-caffeoylquinic acid | 0.37 | |
5 | 5.9 | 367.1034 | 193.0501 | 173.134 | C17H20O9 | 3-O-Caffeoyl-4-O-methylquinate | 0.24 | |
6 | 6.2 | 282,316 | 239.0563 | 179.034 | 195,221,149 | C11H12O6 | Derivative of cinnamic acid | 0.09 |
7 | 6.7 | 269,348 | 771.1993 | 609.1451 | 462,301 | C33H40O21 | Quercetin 3-rutinoside 7-galactoside | 0.26 |
8 | 8.6 | 269,345 | 355.1042 | 161.0227 | 193.179 | C16H20O9 | Trans-feruloylglucose | 0.25 |
9 | 9.4 | 269,340 | 625.1400 | 316.0221 | 117.163 | C27H30O17 | Myricetin-3-rutinoside | 1.91 |
10 | 9.5 | 280 | 325.0937 | 119.0497 | 117.163 | C15H18O8 | 8-β-Glucopyranosyloxycinnamic acid | 3.27 |
11 | 9.8 | 266,346 | 623.1262 | 285.0408 | 447 | C27H28O17 | Luteolin 4’-glucoside 7-galacturonide | 1.80 |
12 | 9.9 | 262,345 | 739.2094 | 284.0327 | 572,255,178 | C33H40O19 | Kaempferol 3-(2’’-rhamnosylrutinoside) | 0.32 |
13 | 10.2 | 265,349 | 339.1092 | 145.0276 | 163 | C16H20O8 | TPCA 1 | 0.27 |
14 | 10.5 | 256,354 | 609.1462 | 300.0281 | C27H30O16 | Rutin | 18.92 | |
15 | 10.8 | 269,354 | 463.0912 | 300.0269 | 271,151 | C21H20O12 | Quercetin-4’-glucoside | 1.06 |
16 | 10.9 | 269,343 | 637.1414 | 299.0567 | 284.2337 | C28H30O17 | MHGB 2 | 2.03 |
17 | 11.0 | 264,346 | 447.0930 | 285.0397 | 269,209,251 | C21H20O11 | Kaempferol 3-O-glucoside | 0.64 |
18 | 11.4 | 265,344 | 593.1527 | 285.0408 | 151,327,178 | C27H30O15 | Kaempferol 3-O-glucoside 3 | 1.87 |
19 | 11.6 | 254,354 | 623.1626 | 315.0515 | 151,243,271 | C28H32O16 | Isorhamnetin 3-O-rhamnoglucoside | 3.75 |
Control | SFP | SEM | p | |
---|---|---|---|---|
Ammonia N (mg/L) | 270 | 282 | 15.5 | 0.849 |
Methane (mmoL) | 1.15 | 1.02 | 0.063 | 0.046 |
pH | 7.60 | 7.45 | 0.041 | 0.064 |
IVDMD (g/kg DM) | 311 | 447 | 18.0 | <0.001 |
Total VFAs (mmoL/L) | 31.5 | 39.9 | 1.76 | 0.011 |
Acetate (mol%) | 65.5 | 66.1 | 0.997 | 0.768 |
Propionate (mol%) | 17.7 | 17.1 | 0.799 | 0.711 |
n-Butyrate (mol%) | 11.0 | 11.2 | 0.239 | 0.764 |
iso-Butyrate (mol%) | 0.861 | 0.617 | 0.158 | 0.455 |
n-Valerate (mol%) | 2.25 | 2.56 | 0.066 | 0.017 |
iso-Valerate (mol%) | 2.50 | 2.27 | 0.115 | 0.318 |
Caproate (mol%) | 0.150 | 0.181 | 0.019 | 0.430 |
Acetate: propionate | 4.02 | 4.10 | 0.353 | 0.923 |
Total protozoa (103/mL) | 6.65 | 8.7 | 6.612 | 0.438 |
Total bacteria (108/mL) | 4.02 | 3.9 | 0.164 | 0.721 |
Archaea (106/mL) | 3.93 | 2.64 | 0.240 | <0.001 |
Methanobacteriales (106/mL) | 1.53 | 1.48 | 0.024 | 0.363 |
Methanomicrobiales (105/mL) | 1.56 | 1.42 | 0.027 | 0.009 |
Control | SFP | SD | p | |
---|---|---|---|---|
Ammonia N (mg/L) | 205 | 199 | 79.1 | 0.849 |
Methane (mmoL) | 3.17 | 2.30 | 0.903 | 0.030 |
pH | 6.36 | 6.37 | 0.575 | 0.974 |
Total VFAs (mmoL/L) | 68.2 | 70.2 | 27.71 | 0.847 |
Acetate (mol%) | 74.6 | 73.3 | 4.33 | 0.462 |
Propionate (mol%) | 11.9 | 10.5 | 4.42 | 0.425 |
n-Butyrate (mol%) | 11.1 | 13.5 | 3.96 | 0.123 |
iso-Butyrate (mol%) | 0.06 | 0.06 | 0.140 | 0.946 |
n-Valerate (mol%) | 1.33 | 1.60 | 0.828 | 0.414 |
iso-Valerate (mol%) | 0.89 | 0.77 | 0.595 | 0.633 |
Caproate (mol%) | 0.20 | 0.34 | 0.473 | 0.457 |
Acetate: Propionate | 7.19 | 7.91 | 0.529 | 0.507 |
Total protozoa (105/g wRC) | 6.7 | 8.2 | 5.61 | 0.508 |
Archaea (107/mL) | 7.71 | 4.79 | 1.84 | <0.001 |
Methanobacteriales (107/mL) | 3.74 | 2.90 | 0.672 | <0.001 |
Methanomicrobiales (107/mL) | 3.50 | 2.50 | 0.463 | 0.009 |
Total bacteria (AU) | 1.0 | 1.01 | 0.110 | 0.863 |
S. bovis (AU) | 1.0 | 1.04 | 0.145 | 0.525 |
B. proteoclasticus (AU) | 1.0 | 1.06 | 0.161 | 0.325 |
B. fibrisolvens (AU) | 1.0 | 1.13 | 0.124 | 0.006 |
F. succinogenes (AU) | 1.0 | 0.97 | 0.311 | 0.832 |
M. elsdenii (AU) | 1.0 | 0.94 | 0.258 | 0.587 |
R. albus (AU) | 1.0 | 1.10 | 0.175 | 0.160 |
R. flavefaciens (AU) | 1.0 | 0.97 | 0.147 | 0.594 |
Genus Prevotella (AU) | 1.0 | 0.96 | 0.299 | 0.729 |
Genus Lactobacillus (AU) | 1.0 | 1.04 | 0.126 | 0.500 |
Day | Control | SFP | SD | p | |||
---|---|---|---|---|---|---|---|
Treatment (T) | Time | T × Time | |||||
RBC (T/L) | 0 | 11.37 | 11.63 | 1.176 | 0.133 | <0.001 | 0.681 |
23 | 7.68 | 7.10 | 1.289 | ||||
30 | 7.22 | 6.56 | 1.382 | ||||
37 | 7.15 | 6.55 | 1.373 | ||||
44 | 7.00 | 6.83 | 1.276 | ||||
Hemoglobin (g/L) | 0 | 111.7 | 115.5 | 11.62 | 0.326 | <0.001 | 0.462 |
23 | 74.6 | 68.9 | 11.30 | ||||
30 | 71.5 | 64.8 | 12.89 | ||||
37 | 72.0 | 67.1 | 14.28 | ||||
44 | 69.5 | 71.7 | 14.29 | ||||
Hematocrit (g/L) | 0 | 0.263 | 0.265 | 0.0251 | 0.208 | <0.001 | 0.458 |
23 | 0.187 | 0.171 | 0.0261 | ||||
30 | 0.182 | 0.165 | 0.0313 | ||||
37 | 0.185 | 0.174 | 0.0339 | ||||
44 | 0.178 | 0.187 | 0.0336 | ||||
MCV (fL) | 0 | 23.2 | 23.0 | 1.86 | 0.281 | <0.001 | 0.354 |
23 | 24.5 | 24.4 | 2.11 | ||||
30 | 25.4 | 25.3 | 2.25 | ||||
37 | 26.0 | 26.7 | 2.04 | ||||
44 | 25.6 | 27.4 | 2.29 |
Day | Control | SFP | SD | p | |||
---|---|---|---|---|---|---|---|
Treatment (T) | Time | T × Time | |||||
Total leukocyte (G/L) | 0 | 8.68 | 8.92 | 2.280 | 0.159 | 0.225 | 0.951 |
23 | 8.00 | 9.25 | 2.515 | ||||
30 | 7.24 | 7.81 | 4.475 | ||||
37 | 7.29 | 7.71 | 1.705 | ||||
44 | 6.55 | 7.90 | 2.047 | ||||
Neutrophils (G/L) | 0 | 3.18 | 3.10 | 1.662 | 0.361 | 0.304 | 0.923 |
23 | 3.13 | 3.66 | 1.589 | ||||
30 | 2.69 | 2.84 | 1.064 | ||||
37 | 2.63 | 2.68 | 1.095 | ||||
44 | 2.51 | 3.01 | 1.526 | ||||
Lymphocytes (G/L) | 0 | 2.23 | 2.22 | 1.313 | 0.899 | 0.606 | 0.987 |
23 | 1.95 | 2.13 | 0.977 | ||||
30 | 2.35 | 2.19 | 1.045 | ||||
37 | 2.61 | 2.50 | 1.186 | ||||
44 | 2.21 | 2.18 | 1.214 | ||||
Monocytes (G/L) | 0 | 2.38 | 2.55 | 1.288 | 0.047 | 0.024 | 0.977 |
23 | 2.10 | 2.48 | 1.055 | ||||
30 | 1.87 | 2.30 | 0.983 | ||||
37 | 1.67 | 1.92 | 0.606 | ||||
44 | 1.44 | 1.93 | 0.686 | ||||
Eosinophils (G/L) | 0 | 0.093 | 0.096 | 0.0596 | 0.200 | <0.001 | 0.395 |
23 | 0.046 | 0.041 | 0.0193 | ||||
30 | 0.065 | 0.033 | 0.0356 | ||||
37 | 0.043 | 0.033 | 0.0177 | ||||
44 | 0.039 | 0.041 | 0.0225 | ||||
Basophils (G/L) | 0 | 0.803 | 0.945 | 0.7947 | 0.028 | 0.002 | 0.930 |
23 | 0.778 | 0.953 | 0.6667 | ||||
30 | 0.275 | 0.445 | 0.2770 | ||||
37 | 0.336 | 0.575 | 0.4151 | ||||
44 | 0.349 | 0.751 | 0.5041 |
Effect | Control | SFP | SD | p |
---|---|---|---|---|
Hypertrophy of mucosa (%) | 15.4 | 30.8 | 3.31 | 0.375 |
Epithelial cell damage (%) | 100 | 100 | 0.00 | – |
Hyperplasia of mucus-producing cells (%) | 7.7 | 0 | 1.51 | 0.327 |
Dilatation of glands (%) | 30.8 | 30.8 | 3.62 | 0.999 |
Damage of glands (%) | 0 | 46.2 | 3.31 | 0.004 |
Inflammatory cell infiltration (%) | 100 | 100 | 0.00 | – |
Submucosal edema (%) | 30.8 | 38.5 | 3.73 | 0.695 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrič, D.; Komáromyová, M.; Batťányi, D.; Kozłowska, M.; Filipiak, W.; Łukomska, A.; Ślusarczyk, S.; Szumacher-Strabel, M.; Cieślak, A.; Várady, M.; et al. Effect of Sainfoin (Onobrychis viciifolia) Pellets on Rumen Microbiome and Histopathology in Lambs Exposed to Gastrointestinal Nematodes. Agriculture 2022, 12, 301. https://doi.org/10.3390/agriculture12020301
Petrič D, Komáromyová M, Batťányi D, Kozłowska M, Filipiak W, Łukomska A, Ślusarczyk S, Szumacher-Strabel M, Cieślak A, Várady M, et al. Effect of Sainfoin (Onobrychis viciifolia) Pellets on Rumen Microbiome and Histopathology in Lambs Exposed to Gastrointestinal Nematodes. Agriculture. 2022; 12(2):301. https://doi.org/10.3390/agriculture12020301
Chicago/Turabian StylePetrič, Daniel, Michaela Komáromyová, Dominika Batťányi, Martyna Kozłowska, Weronika Filipiak, Anna Łukomska, Sylwester Ślusarczyk, Malgorzata Szumacher-Strabel, Adam Cieślak, Marián Várady, and et al. 2022. "Effect of Sainfoin (Onobrychis viciifolia) Pellets on Rumen Microbiome and Histopathology in Lambs Exposed to Gastrointestinal Nematodes" Agriculture 12, no. 2: 301. https://doi.org/10.3390/agriculture12020301
APA StylePetrič, D., Komáromyová, M., Batťányi, D., Kozłowska, M., Filipiak, W., Łukomska, A., Ślusarczyk, S., Szumacher-Strabel, M., Cieślak, A., Várady, M., Kišidayová, S., & Váradyová, Z. (2022). Effect of Sainfoin (Onobrychis viciifolia) Pellets on Rumen Microbiome and Histopathology in Lambs Exposed to Gastrointestinal Nematodes. Agriculture, 12(2), 301. https://doi.org/10.3390/agriculture12020301