Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Essential Oil of Anise
2.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4. DPPH Free Radical Scavenging Activity
2.5. Mite Rearing
2.6. Acaricidal Activity of Anise Oil against Tetranychus Urticae under Laboratory Conditions
2.7. Determination of Enzyme Activities
2.8. Assay of Protease Activity
2.9. Assay of Acetylcholinesterase (AChE) Activity
2.10. Molecular Docking of E-Anethole in AChE
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migeon, A.; Dorkeld, F. Spider Mites Web: A comprehensive database for the Tetranychidae. Trends Acarol. 2010, 557–560. [Google Scholar]
- De Carvalho Ribeiro, N.; da Camara, C.A.G.; de Melo, J.P.R.; de Moraes, M.M. Effect of the essential oil from the latex of the fruit Mangifera indica L. on Tetranychus urticae Koch (Acari, Tetranychidae). Acarologia 2019, 59, 335–347. [Google Scholar] [CrossRef]
- Nicastro, R.L.; Sato, M.E.; Arthur, V.; Silva, M.Z. Chlorfenapyr resistance in the spider mite Tetranychus urticae: Stability, cross-resistance and monitoring of resistance. Phytoparasitica 2013, 41, 503–513. [Google Scholar] [CrossRef]
- Reis, P.R.; Franco, R.A.; Pedro-Neto, M.; Teodoro, A.V. Selectivity of agrochemical son predatory mites (Phytoseiidae) found on coffee plants. Coffee Sci. 2006, 1, 64–70. [Google Scholar]
- Vinicius, G.T.; Marineide, R.V.; Gustavo, L.M.M.; Cristiane, G.N. Plant extracts with potential to control of two-spotted spider mite. Arq. Inst. Biológico 2018, 85, e0762015. [Google Scholar]
- Hayes, W.J.; Laws, E.R. Hand Book of Pesticide Toxicology; Academic Press: San Diego, CA, USA, 1991; Volume 1. [Google Scholar]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–425. [Google Scholar] [CrossRef]
- Sharar, M.; Saied, E.M.; Rodriguez, M.C.; Arenz, C.; Montes-Bayón, M.; Linscheid, M.W. Elemental Labelling and Mass Spectrometry for the Specific Detection of Sulfenic Acid Groups in Model Peptides: A Proof of Concept. Anal. Bioanal. Chem. 2017, 409, 2015–2027. [Google Scholar] [CrossRef]
- Moustafa-Farag, M.; Mohamed, H.I.; Mahmoud, A.; Elkelish, A.; Misra, A.N.; Guy, K.M.; Kamran, M.; Ai, S.; Zhang, M. Salicylic Acid Stimulates Antioxidant Defense and Osmolyte Metabolism to Alleviate Oxidative Stress in Watermelons under Excess Boron. Plants 2020, 9, 724. [Google Scholar] [CrossRef]
- Isman, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020, 19, 235–241. [Google Scholar] [CrossRef]
- Gaber, A.; Refat, M.S.; Belal, A.A.M.; El-Deen, I.M.; Hassan, N.; Zakaria, R.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Saied, E.M. New Mononuclear and Binuclear Cu(II), Co(II), Ni(II), and Zn(II) Thiosemicarbazone Complexes with Potential Biological Activity: Antimicrobial and Molecular Docking Study. Molecules 2021, 26, 2288. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A. Plant Essential Oils from Apiaceae Family as Alternatives to ConventionalInsecticides. Ecol. Balk. 2013, 5, 149–172. [Google Scholar]
- Amini, S.; Tajabadi, F.; Khani, M.; Labbafi, M.R.; Tavakoli, M. Identification of the seed essential oil composition of four apiaceae species and comparison of their biological effects on Sitophilus oryzae L. and Tribolium castaneum (Herbst.). J. Med. Plant 2018, 17, 68–76. [Google Scholar]
- Saleh, A.A.H.; Abdel-Kader, D.Z.; El Elish, A.M. Role of Heat Shock and Salicylic Acid in Antioxidant Homeostasis in Mungbean (Vigna Radiata L.) Plant Subjected to Heat Stress. Am. J. Plant Physiol. 2007, 2, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Lucca, P.S.R.; Nobrega, L.H.P.; Alves, L.F.A.; Cruz-Silva, C.T.A.; Pacheco, F.P. The insecticidal potential of Foeniculum vulgare Mill., Pimpinella anisum L. and Caryophillus aromaticus L. to control aphid on kale plants. Rev. Bras. Plantas Med. 2015, 17, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Knio, K.M. Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus Caspius. Bioresour. Technol. 2007, 99, 763–768. [Google Scholar] [CrossRef]
- Robles-Bermúdez, A.; Candelario, S.O.; Rodríguez-Maciel, C.; Gómez-Aguilar, J.R.; Isiordia-Aquino, N.; Pérez-González, R. Traps Treated with Pimpinella anisum, as Attractant of Thrips (Thysanoptera: Thripidae) in Rose. Rev. Mex. Cienc. Agrícolas 2011, 31, 555–563. [Google Scholar]
- Koul, O.; Walia, S.; Dhaliwal, G.S. Essential oils as green pesticides: Potential and constraints. Jpn. Biopestic. Int. 2008, 4, 63–84. [Google Scholar]
- Patricia, M.S.; Migdalia, M.; Juan, A.P.; Mario, S.; Víctor, H.; Esther, P. Gas Chromatography-Mass Spectrometry Study from the Leaves Fractions Obtained of Vernonanthura patens (Kunth) H. Rob. Int. J. Org. Chem. 2013, 3, 105–109. [Google Scholar]
- Gargouri, W.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T.; Kechaour, N. Evaluation of bioactive compounds and biological activities of Tunisian propolis. LWT-Food Sci. Technol. 2019, 111, 328–336. [Google Scholar] [CrossRef]
- Pritam, S.; Clare, G.K. A Method for Continuous Production of Diapausing Two-Spotted Mite in the Laboratory; The Horticulture and Food Research Institute of New Zealand: Auckland, New Zealand, 1993; Volume 16. [Google Scholar]
- Abbott’s, W.S.A. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis a Statistical Treatment of the Sigmoid Response Curve; Cambridge University Press: Cambridge, UK, 1952; 318p. [Google Scholar]
- Systat Software, Inc. Sigma Plot Version 2.0. 1996. Available online: www.systatsoftware.com (accessed on 20 December 2021).
- Ortego, F.; Novillo, C.; Castañera, P. Characterization and distribution of digestive proteases of the stalk corn borer, Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 1996, 33, 163–180. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1967, 72, 248–254. [Google Scholar] [CrossRef]
- Wu, G.; Miyata, T. Susceptibilities to methamidophos and enzymatic characteristics in 18 species of pest insects and their natural enemies in crucifer vegetable crops. Pestic. Biochem. Physiol. 2005, 82, 79–93. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Nachon, F.; Terrone, L.R.; Israel, S.; Joel, L.S. A Second Look at the Crystal Structures of Drosophila melanogaster Acetylcholinesterase in Complex with Tacrine Derivatives Provides Insights Concerning Catalytic Intermediates and the Design of Specific Insecticides. Molecules 2020, 25, 1198. [Google Scholar] [CrossRef] [Green Version]
- Larson, T.E.; Fabiola, P.; My-Hang, H.; Jonathan, D.G.; Angela, M.K.; Li, Z.; Matthew, B.; Ethan, A.M.; Vern, B.C. Toxoplasma gondii Cathepsin L Is the Primary Target of the Invasion-inhibitory Compound Morpholinurea-leucylhomophenyl-vinyl Sulfone Phenyl. J. Biol. Chem. 2009, 284, 26839–26850. [Google Scholar] [CrossRef] [Green Version]
- Tamhane, A.C. Multiple comparisons in model I one-way ANOVA with unequal variances. Commun. Stat.-Theory Methods 1977, 6, 15–32. [Google Scholar] [CrossRef]
- Laborda, R.; Manzano, I.; Gamon, M.; Gavidia, I.; Perez-Bermudez, P.; Boluda, R. Effects of Rosmarinus officinalis and Salvia officinalis essential oils on Tetranychus urticae Koch (Acari: Tetranychidae). Ind. Crops Prod. 2013, 48, 106–110. [Google Scholar] [CrossRef]
- Cavalcanti, S.C.H.; Niculau, E.S.; Blank, A.F.; Camara, C.A.G.; Araujo, I.N.; Alves, B.P. Composition and acaricidal activity of Lippia sidoides essential oils against two spotted spider mite (Tetranychus urticae Koch). Bioresour. Technol. 2010, 101, 829–832. [Google Scholar] [CrossRef]
- Wei, J.; Ding, W.; Zhao, Y.G.; Vanichpakorn, P. Acaricidal activity of Aloe vera L. leaf extracts against Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae). J. Asia-Pac. Entomol. 2011, 14, 353–356. [Google Scholar] [CrossRef]
- Isman, M.B.; Akhtar, Y. Plant Natural Products as a Source for Developing Environmentally Acceptable Insecticides. In Insecticides Design Using Advanced Technologies; IIshaaya, I., Nauen, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 235–248. [Google Scholar]
- Chermenskaya, T.D.; Stepanycheva, E.A.; Shchenikova, A.V.; Chakaeva, A.S. Insec to acaricidal and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Ind. Crops Prod. 2010, 32, 157–163. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, L.K.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides Biological approaches to control Tetranychus urticae. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- Vieira, M.R.; Sacramento, L.V.S.; Furlan, L.O.; Figueira, J.C.; Rocha, A.B.O. Efeito acaricida de extratos vegetais sobre fêmeas de Tetranychus urticae Koch (Acari: Tetranychidae). Rev. Bras. Plantas Med. 2006, 8, 210–217. [Google Scholar]
- Choi, W.I.; Lee, S.G.; Park, H.M.; Ahn, Y.J. Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). J. Econ. Entomol. 2004, 97, 553–558. [Google Scholar] [CrossRef]
- Habib, U.; Athar, M.; Bernd, H. Essential oil and composition of anise (Pimpinella anisum L.) with varying seed rates and row spacing. Pak. J. Bot. 2014, 46, 1859–1864. [Google Scholar]
- Ullah, H.; Mahmood, A.; Ijaz, M.; Tadesse, B.; Honermeier, B. Evaluation of anise (Pimpinella anisum L.) accessions with regard to morphological characteristics, fruit yield, oil contents and composition. J. Med. Plants Res. 2013, 7, 177–2186. [Google Scholar]
- Orav, A.; Raal, A.; Arak, E. Essential oil composition of Pimpinella anisum L., fruits from various European countries. Nat. Prod. Res. 2008, 22, 227–232. [Google Scholar] [CrossRef]
- Yan, F.; Beyer, M.E.; Azizi, A.; Honermeier, B. Effect of sowing time and sowing density on fruit yield, essential oil concentration and composition of anise (Pimpinella anisum L.) under field conditions in Germany. J. Med. Spice Plants 2011, 16, 26–33. [Google Scholar]
- Muthanna, J.M.; Hiyam, A.E. Gas Chromatography-Mass Spectrometry Profiling of Pimpinella anisum Oils and its Antimicrobial and Antioxidant Activities. Int. J. Pharm. Qual. Assur. 2020, 11, 257–261. [Google Scholar]
- Hasimi., A.; Tolan, V.; Kizil, S.; Kilinc, E. Determination of essential oil composition, antimicrobial and antioxidant properties of anise (Pimpinella anisum L.) and cumin (Cuminum cyminum L.) seeds. J. Agric. Sci. 2014, 20, 19–26. [Google Scholar]
- Mohammed, S.; Albulushi, A.; Al Saidi, H.; Amaresh, N.; Mullaicharam, A.R. Study of physicochemical properties, antibacterial and GC-MS analysis of essential oil of the aniseed (Pimpinella anisum Linn.) in Oman. J. Pharmacogn. Phytochem. 2014, 2, 24–33. [Google Scholar]
- Singh, G.; Marimuthu, P. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. J. Agric. Food Chem. 2006, 54, 174–181. [Google Scholar] [CrossRef]
- Yadegarinia, D.; Gachkar, L.; Rezaei, M.; Taghizadeh, M.; Astaneh, S.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Mentha communis L. essential oils. Phytochemistry 2006, 67, 1249–1255. [Google Scholar] [CrossRef]
- Majhenic, L.; Skerget, M.; Knez, Z. Antioxidant and antimicrobial activity of guarana seed extracts. Food Chem. 2007, 104, 1258–1268. [Google Scholar] [CrossRef]
- Lopez-Bote, L.; Gray, J.I.; Gomaa, E.A.; Fle Gal, C.I. Effect of dietary administration of oil extracts from rosemary and sage on lipid oxidation in broiler meat. Poult. Sci. 1998, 39, 235–240. [Google Scholar] [CrossRef]
- Rabha, M.G.K.; Nazar, M.G.; Ali, A.E. Identification of Anise Seed Oils and their Antimicrobial and Antioxidant Activities. Red Sea Univ. J. Basic Appl. Sci. 2017, 2, 232–243. [Google Scholar]
- De Carvalho Brito, R.; da Silva Fontes, L.; Soares da Silva, P.H.; de Sousa Santana, C.; e Silva Barbosa, D.R. Essential oils from Betula lenta, Cinnamomum cassia, Citrus aurantium var. Amara and Acorus calamus as biopesticides against cowpea weevil. Int. J. Trop. Insect Sci. 2022, 42, 261–268. [Google Scholar] [CrossRef]
- Park, Y.-L.; Tak, J.-H. Essential Oils for Arthropod Pest Management in Agricultural Production Systems. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 61–70. ISBN 978-0-12-416641-7. [Google Scholar]
- Çalmasur, O.; Aslan, I.; Şahin, F. Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 2006, 23, 140–146. [Google Scholar] [CrossRef]
- Tunc, I.; Sahinkaya, S. Sensitivity of Two Greenhouse Pest to Vapour of Essential Oils. Entomol. Exp. Appl. 1998, 86, 183–187. [Google Scholar] [CrossRef]
- Topuz, E.; Erler, F. Bioefficacy of Some Essential Oils against the Carmine Spider Mite, Tetranychus cinnabarinus. Fresenius Environ. Bull. 2007, 16, 1498–1502. [Google Scholar]
- Ahmed, Q.; Agarwal, M.; Al-Obaidi, R.; Wang, P.; Ren, Y. Evaluation of Aphicidal Effect of Essential Oils and Their Synergistic Effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae). Molecules 2021, 26, 3055. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Radka, Z.V.; Nadezhda, T.P.; Yulian, T.; Ivayla, N.D.; Ilian, K.B. Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. J. Appl. Pharm. Sci. 2019, 9, 72–78. [Google Scholar]
- Rania, H.M. Toxicity and Biochemical Effect of some Plant Extracts Against The Two-Spotted Spider mite (Tetranychus urticae Koch). (Acari: Tetranychidae). Plant Arch. 2020, 20, 5450–5454. [Google Scholar]
- Hala, M.L.M. Acaricidal activity of essential oil of lemongrass, Chymbopogon citratus (DC.) Stampe against Tetranychus urticae (Koch). J. Plant Prot. Pathol. 2012, 3, 43–51. [Google Scholar]
- Farag, M.A.; Ezzat, S.M.; Salama, M.M.; Tadros, M.G.; Serya, R.A.T. Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species. Z. Fur Nat. Sect. C J. Biosci. 2016, 71, 393–402. [Google Scholar] [CrossRef]
- Youssef, N.S. Toxic and synergistic properties of several volatile oils against larvae of the house fly, Musca domestica vicina Maquart (Diptera: Muscidae). J. Basic Appl. Zool. 1997, 22, 131–149. [Google Scholar]
- Hummelbrunner, L.; Isman, M.B. Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cut worms, Spodoptera litura (Lep., Noctuidae). J. Agric. Food Chem. 2001, 49, 715–720. [Google Scholar] [CrossRef]
- Chaubey, M.K. Acute, Lethal and Synergistic Effects of Some Terpenes Against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ecol. Balk. 2012, 4, 53–62. [Google Scholar]
- Athanase, H.; Fedai, E. Fecundity and fertility inhibition efects of some plant essential oils and their major components against Acanthoscelides obtectus Say (Coleoptera: Bruchidae). J. Plant Dis. Prot. 2020, 127, 615–623. [Google Scholar]
No Peak | RT 1 (Min) | Component Names | % 2 |
---|---|---|---|
1 | 5.215 | α-Pinene | 0.59 |
2 | 4.621 | E-β-Ocimene | 0.93 |
3 | 5.802 | D-Limonene | 1.00 |
4 | 6.171 | γ-Terpinene | 0.60 |
5 | 6.421 | 3-Carene | 0.93 |
6 | 6.901 | Linalool | 0.77 |
7 | 6.958 | α-Santalol | 0.70 |
8 | 7.545 | Estragole | 13.52 |
9 | 8.147 | Z-Anethole | 1.17 |
10 | 8.734 | E-anethole | 53.23 |
11 | 9.099 | α-Guaiene | 0.88 |
12 | 9.238 | 2-Allyl-4-methylphenol | 0.59 |
13 | 9.372 | (−)-Aristolene | 1.47 |
14 | 9.501 | Caryophyllene | 1.26 |
15 | 9.718 | Aromandendrene | 0.56 |
16 | 9.803 | γ-Elemene | 1.07 |
17 | 9.976 | α-Himachalene | 1.94 |
18 | 10.218 | Longifolene | 6.08 |
19 | 10.358 | Thujopsene | 1.26 |
20 | 10.489 | Cedrene | 0.80 |
21 | 11.031 | Ledene | 1.42 |
22 | 11.354 | Isospathulenol | 0.71 |
23 | 11.826 | E-Sesquisabinene hydrate | 0.66 |
24 | 12.683 | E-Isoeugenol | 4.81 |
25 | 13.048 | Phenol, 2-methoxy-4-(1-propenyl)- | 0.66 |
26 | 13.676 | Acetophenone, 2′,5′-dimethoxy- | 0.71 |
27 | 17.561 | Geranyl isovalerate | 0.99 |
28 | 20.336 | Heptacosane | 0.72 |
Anise Oil Concentration (µL/L) | Mortality% of T. urticae | ||
---|---|---|---|
24 h | 48 h | 72 h | |
10 | 27.3 ± 2.7 d | 28.1 ± 1.0 d | 33.0 ± 1.4 d |
20 | 42.2 ± 3.9 c | 43.9 ± 1.3 c | 45.3 ± 1.8 c |
30 | 70.1 ± 1.8 b | 73.9 ± 4.1 b | 87.0 ± 1.5 b |
40 | 89.3 ± 6.6 a | 91.0 ± 1.4 a | 96.0 ± 2.2 a |
Control | 0.000 | 0.000 | 0.000 |
L.S.D | 0.46 | 0.98 | 0.36 |
Conc. (µL/L) | Mean Number of Egg Hatchability ± SE after Detected Days | |||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 4th | 5th | 6th | |
10 | 0.00 | 0.00 | 19.75 ± 0.40 a | 19.52 ± 0.48 a | 17.25 ± 0.37 a,b | 11.25 ± 0.31 b |
20 | 0.00 | 0.00 | 19.25 ± 0.28 a | 16.75 ± 0.38 b | 15.25 ± 0.40 b | 9.50 ± 0.29 b |
30 | 0.00 | 0.00 | 16.25 ± 0.39 b | 10.75 ± 0.35 c | 9.50 ± 0.29 c | 6.25 ± 0.20 c |
40 | 0.00 | 0.00 | 10.75 ± 0.21 c | 7.75 ± 0.28 d | 4.75 ± 0.28 d | 1.25 ± 0.28 d |
Cont. | 0.00 | 0.00 | 19.12 ± 1.00 a | |||
L.S.D | 1.17 | 1.52 | 3.33 | 1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, S.M.; Ahmed, N.; Selim, S.; Al-Khalaf, A.A.; El Nahhas, N.; Abdel-Hafez, S.H.; Sayed, S.; Emam, H.M.; Ibrahim, M.A.R. Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch). Agriculture 2022, 12, 224. https://doi.org/10.3390/agriculture12020224
El-Sayed SM, Ahmed N, Selim S, Al-Khalaf AA, El Nahhas N, Abdel-Hafez SH, Sayed S, Emam HM, Ibrahim MAR. Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch). Agriculture. 2022; 12(2):224. https://doi.org/10.3390/agriculture12020224
Chicago/Turabian StyleEl-Sayed, Salwa M., Nevin Ahmed, Samy Selim, Areej A. Al-Khalaf, Nihal El Nahhas, Shams H. Abdel-Hafez, Samy Sayed, Heba M. Emam, and Mervat A. R. Ibrahim. 2022. "Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch)" Agriculture 12, no. 2: 224. https://doi.org/10.3390/agriculture12020224
APA StyleEl-Sayed, S. M., Ahmed, N., Selim, S., Al-Khalaf, A. A., El Nahhas, N., Abdel-Hafez, S. H., Sayed, S., Emam, H. M., & Ibrahim, M. A. R. (2022). Acaricidal and Antioxidant Activities of Anise Oil (Pimpinella anisum) and the Oil’s Effect on Protease and Acetylcholinesterase in the Two-Spotted Spider Mite (Tetranychus urticae Koch). Agriculture, 12(2), 224. https://doi.org/10.3390/agriculture12020224