Effects of Irrigation Strategy and Plastic Film Mulching on Soil N2O Emissions and Fruit Yields of Greenhouse Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of Field Site and Materials
2.2. Experimental Design
2.3. Test Items and Methods
2.3.1. Soil Physicochemical Properties and Soil Microorganisms
Soil Moisture and Temperature
Soil TN and MBN
Soil Enzyme Activity
Soil nirS-Type Denitrifying Bacteria Community
2.3.2. N2O Emission
2.3.3. Yield and Water Use Efficiency
2.4. Data Analysis
3. Results
3.1. Effects of Irrigation Strategy and Plastic Film Mulching on Soil Water and Temperature in the Tomato Root Zone
3.2. Effects of Irrigation Strategy and Plastic Film Mulching on Soil Total Nitrogen (TN) and Microbial Biomass Nitrogen (MBN)
3.3. Effects of Irrigation Strategy and Plastic Film Mulching on Urease and Leucine Aminopeptidase Activities in Greenhouse Tomato Rhizosphere Soil
3.4. Effects of Irrigation Strategy and Plastic Film Mulching on N2O Emissions
3.5. Effects of Irrigation Strategy and Plastic Film Mulching on the nirS-Type Denitrifying Bacterial Community in Tomato Rhizosphere Soil
3.6. Effects of Irrigation Strategy and Plastic Film Mulching on Fruit Yield and Water Use Efficiency of Tomato
4. Discussion
4.1. Effect of Irrigation Strategy and Plastic Film Mulching on Soil Water, Temperature and nirS-Type Denitrifying Bacteria Abundances
4.2. Effects of Irrigation Strategy and Plastic Film Mulching on Soil Enzyme Activities and N2O Emissions
4.3. Effects of Irrigation Strategy and Plastic Film Mulching on Water Use Efficiency, Fruit Yield and Economic Effectiveness
5. Conclusions
- (1)
- The MSPF treatment could improve the uniformity of soil water in the 0–80 cm soil layer and the water content at 0–40 cm. Film mulching could increase the soil temperature at depths of 5–25 cm.
- (2)
- The MSPF and DIPF treatments could increase microbial nitrogen, promote the activities of rhizosphere UR and LAP, accelerate the turnover of soil nutrients, and increase the N2O emission rate. However, there were no significant differences between the MSPF and DIPF treatments in terms of the N2O emissions.
- (3)
- Both the MSPF and the DIPF treatments improved yield and water use efficiency, but there were no significant differences between the MSPF and DIPF treatments.
- (4)
- Both the MSPF and the DIPF treatments could improve tomato fruit yield in greenhouses. MSPF could be used to configure commercially available installation and operation. The comprehensive benefit of MSPF treatment is that it is more profitable than that of DIPF.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Malherbe, S.; Marais, D. Economics, yield and ecology, A case study from the south african tomato industry. Outlook Agric. 2015, 44, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Constantz, J.; Murphy, F. The temperature dependence of ponded infiltration under isothermal conditions. J. Hydrol. 1991, 122, 119–128. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, X.; Zhang, J. China’s food security is threatened by the unsustainable use of water resources in North and Northwest China. Food Energy Secur. 2014, 3, 7–18. [Google Scholar] [CrossRef]
- De, F.T.; Griffiths, R.I.; Knight, C.G.; Nicolitch, O.; Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 2020, 368, 270–274. [Google Scholar]
- Mu, L.; Wang, C.; Xue, B.; Wang, H.; Li, S. Assessing the impact of water price reform on farmers’ willingness to pay for agricultural water in northwest China. J. Clean. Prod. 2019, 234, 1072–1081. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, F.; Hu, X.; Zhang, J. Elevated carbon dioxide and soil moisture on early growth response of soybean. Plant Soil 2002, 238, 69–77. [Google Scholar] [CrossRef]
- Wang, H.Q.; Zhang, M.S.; Dang, X.Y.; Zhu, H. The response of agricultural water demand to climate change in shiyang river basin, in northwest China. Adv. Mater. Res. 2011, 347–353, 1964–1972. [Google Scholar] [CrossRef]
- Gao, J.; Yan, Y.; Hou, X.; Liu, X.; Zhang, Y.; Huang, S.; Wang, P. Vertical distribution and seasonal variation of soil moisture after drip-irrigation affects greenhouse gas emissions and maize production during the growth season. Sci. Total Environ. 2021, 763, 142965. [Google Scholar] [CrossRef]
- Takeda, N.; Friedl, J.; Rowlings, D.; De Rosa, D.; Scheer, C.; Grace, P. Exponential response of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane cropping system. Agric. Ecosyst. Environ. 2021, 313, 107376. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.; Lin, S.; Wan, L.; Zhao, Y.; Butterbach, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching, A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lv, H.; Qasim, W.; Wan, L.; Wang, Y.; Lian, X.; Liu, Y.; Hu, J.; Wang, Z.; Li, G. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production. Environ. Pollut. 2021, 273, 116521. [Google Scholar] [CrossRef] [PubMed]
- Bracken, C.J.; Lanigan, G.J.; Richards, K.G.; Müller, C.; Tracy, S.R.; Grant, J.; Krol, D.J.; Sheridan, H.; Lynch, M.; Brace, C. Source partitioning using N2O isotopomers and soil WFPS to establish dominant N2O production pathways from different pasture sward compositions. Sci. Total. Environ. 2021, 781, 146515. [Google Scholar] [CrossRef] [PubMed]
- Mann, N. Presentation of Luce Irigaray for the Degree of Doctor of Literature honoris causa, University of Londno. J. Roman. Stud. 2004, 4, 85–88. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Ma, X.; Liu, X.; Zhang, P.; Cai, T.; Jia, Z. Ridge-furrow mulching system and supplementary irrigation can reduce the greenhouse gas emission intensity. Sci. Total Environ. 2020, 717, 137262. [Google Scholar] [CrossRef]
- Franco, L.S.; Álvaro, F.J.; Plaza, D.; Arrúe, J.L.; Cantero, M.C.; Cavero, J. Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions. Agric. Water Manag. 2019, 221, 303–311. [Google Scholar] [CrossRef]
- Lü, G.; Song, J.; Bai, W.; Wu, Y.; Liu, Y.; Kang, Y. Effects of different irrigation methods on micro-environments and root distribution in winter wheat fields. J. Integr. Agric. 2015, 14, 1658–1672. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Ye, X.; Zhang, X.; Li, W.; Fan, Q.; Zou, H.; Zhang, Y. Characteristics of Soil Nitrous Oxide Emissions and Influence Factors under Different Irrigation Managements from Greenhouse Soil. J. Soil Water Conserv. 2016, 30, 310–315. [Google Scholar]
- Mehmood, F.; Wang, G.; Gao, Y.; Liang, Y.; Chen, J.; Si, Z.; Ramatshaba, T.S.; Zain, M.; Shafeeq, U.R.; Duan, A. Nitrous oxide emission from winter wheat field as responded to irrigation scheduling and irrigation methods in the North China Plain. Agric. Water Manag. 2019, 222, 367–374. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Z.; Bai, Q.; Zhang, Y.; Qiu, X.; Qin, H.; Yang, H.; Wang, Y. Effect of Microsprinkler Irrigation under Plastic Film on Photosynthesis and Fruit Yield of Greenhouse Tomato. J. Sens. 2020, 2020, 8849419. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, W.; Bai, Q.; Li, Y.; Wang, J.; Wang, Z.; Zhang, Z. Improvement of quality and yield of greenhouse tomato (Solanum Lycopersicum L.) Plants by micro-sprinkler irrigation under plastic film. Appl. Ecol. Environ. Res. 2020, 18, 6905–6926. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Shock, C.C.; Yang, K.; Kang, S.; Qin, J.; Li, S. Influence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation. Agric. Water Manag. 2017, 180, 160–171. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Xu, D.; Zhang, J.; Shan, Y. Evaluating effects of four controlling methods in bare strips on soil temperature, water, and salt accumulation under film-mulched drip irrigation. Field Crop. Res. 2017, 214, 350–358. [Google Scholar] [CrossRef]
- Feng, J.; Li, Y.; Wang, W.; Xue, S. Effect of optimization forms of flow path on emitter hydraulic and anti-clogging performance in drip irrigation system. Irrig. Sci. 2018, 36, 37–47. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, G.; Xu, D.; Jian, W.; Ma, X. Effects of Treflan injection on winter wheat growth and root clogging of subsurface drippers. Agric. Water Manag. 2010, 97, 723–730. [Google Scholar] [CrossRef]
- Del, V.Á.; Zubelzu, S.; Juana, L. Numerical routine for soil water dynamics from trickle irrigation. Appl. Math. Model. 2020, 83, 371–385. [Google Scholar]
- Manoranjan, K.; Ravikant, V.A.; Reddy, K.S.; Reddy, K.S. Development of micro-sprinkler system utilizing renewable energy for small holders in dryland agriculture of India. Clean. Eng. Technol. 2022, 7, 100433. [Google Scholar]
- Mana, J.; Yu, J.H.; Whitec, P.; Gu, S.B.; Zhang, Y.L.; Guo, Q.F. Effects of supplemental irrigation with micro-sprinkling hoses on water distribution in soil and grain yield of winter wheat. Field Crop. Res. 2014, 161, 26–37. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, Y.; Yao, C.; Song, W.; Xu, X.; Zhang, M.; Zhou, X.; Gao, Y.; Wang, Z.; et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis, 3rd ed.; Chinese Agriculture Press: Beijing, China, 2007. [Google Scholar]
- Zhang, L.; Zhang, S.Q.; Ren, K.Y.; Li, J.J.; Duan, Y.H.; Xu, M. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities. Sci. Agric. Sin. 2020, 53, 4226–4236. [Google Scholar]
- He, T.; Yuan, J.; Luo, J.; Lindsey, S.; Xiang, J.; Lin, Y.; Liu, D.; Chen, Z.; Ding, W. Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field, A three-year study. Sci. Total Environ. 2020, 743, 140500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Chao, R.; Wan, Z.; Lang, C.; Yang, J.; Bao, T.; Gao, Q. Effects of different grazing intensities on soil extracellular enzyme activities in a typical steppe grassland. J. Arid. Land Resour. Environ. 2019, 33, 145–151. [Google Scholar]
- Li, Y.; Niu, W.; Zhang, M.; Wang, J.; Zhang, Z. Artificial soil aeration increases soil bacterial diversity and tomato root performance under greenhouse conditions. Land Degrad. Dev. 2020, 31, 1443–1461. [Google Scholar] [CrossRef]
- Ding, J.; Fang, F.; Lin, W.; Qiang, X.; Xu, C.; Mao, L.; Li, Q.; Zhang, X.; Li, Y. N2O emissions and source partitioning using stable isotopes under furrow and drip irrigation in vegetable field of North China. Sci. Total Environ. 2019, 665, 709–717. [Google Scholar] [CrossRef]
- Nair, D.; Abalos, D.; Philippot, L.; Bru, D.; Mateo, M.N.; Petersen, S.O. Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3,4-dimethylpyrazole phosphate. Soil Biol. Biochem. 2021, 157, 108224. [Google Scholar] [CrossRef]
- Niu, L.; Yan, Y.; Hou, P.; Bai, W.; Zhao, R.; Wang, Y.; Li, S.; Du, T.; Zhao, M.; Song, J.; et al. Influence of plastic film mulching and planting density on yield, leaf anatomy, and root characteristics of maize on the Loess Plateau. Crop J. 2020, 8, 548–564. [Google Scholar] [CrossRef]
- Van, S.E.; Albeke, S.E.; Scasta, J.; Dvan, D.L. Quantifying the immediate response of the soil microbial community to different grazing intensities on irrigated pastures. Agric. Ecosyst. Environ. 2022, 326, 107805. [Google Scholar]
- Wang, J.; Du, Y.; Niu, W.; Han, J.; Li, Y.; Yang, P. Drip irrigation mode affects tomato yield by regulating root–soil–microbe interactions. Agric. Water Manag. 2022, 260, 107188. [Google Scholar] [CrossRef]
- Wu, C.; Ma, Y.; Wang, D.; Shan, Y.; Song, X.; Hu, H.; Ren, X.; Ma, X.; Cui, J.; Ma, Y. Integrated microbiology and metabolomics analysis reveal plastic mulch film residue affects soil microorganisms and their metabolic functions. J. Hazard. Mater. 2022, 423, 127258. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, S.; Carlos, M.M.; Neil, B.M.; Zhao, B.; Liu, J.; Hao, G. Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. J. Integr. Agric. 2022, 21, 208–221. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Wang, J.; Liu, L.; Zhang, M.; Xu, J. Effects of Artificial Soil Aeration Volume and Frequency on Soil Enzyme Activity and Microbial Abundance when Cultivating Greenhouse Tomato. Soil Sci. Soc. Am. J. 2016, 80, 1208. [Google Scholar] [CrossRef]
- Maxwell, T.L.; Augusto, L.; Bon, L.; Courbineau, A.; Altinalmazis, K.A.; Milin, S.; Bakker, M.R.; Jactel, H.; Fanin, N. Effect of a tree mixture and water availability on soil nutrients and extracellular enzyme activities along the soil profile in an experimental forest. Soil Biol. Biochem. 2020, 148, 107864. [Google Scholar] [CrossRef]
- Wang, C.; Dippold, M.A.; Blagodatskaya, E.; Dorodnikov, M. Oxygen matters, Short- and medium-term effects of aeration on hydrolytic enzymes in a paddy soil. Geoderma 2022, 407, 115548. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Gui, D.; Zeng, F. Relationship between soil profile accumulation and surface emission of N2O, Effects of soil moisture and fertilizer nitrogen. Biol. Fertil. Soils 2019, 55, 97–107. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Yang, R.; Zhuang, S.; Lin, W.; Li, Y. Evaluating microbial role in reducing N2O emission by dual isotopocule mapping following substitution of inorganic fertilizer for organic fertilizer. J. Clean. Prod. 2021, 326, 129442. [Google Scholar] [CrossRef]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Muñoz-Carpena, R.; Icerman, J. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 23–34. [Google Scholar] [CrossRef]
- Liao, B.; Wu, X.; Yu, Y.; Luo, S.; Hu, R.; Lu, G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Sci. Total Environ. 2020, 698, 134212. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Z.; Huang, M.; Hui, X.; Wang, S.; Zhao, Y.; He, H.; Zhang, X.; Diao, C.; Cao, H.; et al. Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China. Field Crop. Res. 2018, 218, 69–77. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Fan, J.; Zhang, F.; Huang, C. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crop. Res. 2021, 270, 108210. [Google Scholar] [CrossRef]
Texture | Clay | Silt | Gravel | |
---|---|---|---|---|
Effective diameter (mm) | <0.002 | 0.002–0.02 | >0.02 | |
Content (%) | 6.47 | 29.63 | 63.9 | |
Nutrient | Total organic matter | Total phosphorus | Total potassium | Total nitrogen |
Content (g/kg) | 5.53 | 0.38 | 14.33 | 0.36 |
Growing Season | Treatment | Sobs | Shannon | Simpson | Ace | Chao | Coverage |
---|---|---|---|---|---|---|---|
Spring | MSPF | 440.333 ± 18.009 a | 4.074 ± 0.066 ab | 0.044 ± 0.008 a | 549.428 ± 19.646 a | 531.713 ± 11.074 a | 0.9921 ± 0.001 a |
DIPF | 463.667 ± 58.347 a | 4.192 ± 0.334 a | 0.039 ± 0.014 a | 560.432 ± 69.79 a | 545.986 ± 69.462 a | 0.9921 ± 0.002 a | |
MSI | 316 ± 35.679 b | 3.67 ± 0.258 b | 0.059 ± 0.015 a | 409.457 ± 52.667 b | 402.954 ± 52.067 b | 0.9925 ± 0.0015 a | |
F-value | 11.339 ** | 3.694 ** | 2.008 ns | 7.940 * | 7.294 * | 0.091 ns | |
Autumn | MSPF | 449 ± 101.946 a | 3.616 ± 0.468 ab | 0.072 ± 0.023 a | 574.282 ± 112.76 a | 548.788 ± 109.586 a | 0.9927 ± 0.0009 ab |
DIPF | 504 ± 106.86 a | 3.947 ± 0.364 a | 0.057 ± 0.031 a | 603.154 ± 116.073 a | 585.874 ± 110.158 a | 0.9918 ± 0.0006 b | |
MSI | 236 ± 41.761 b | 2.801 ± 0.485 b | 0.176 ± 0.094 a | 335.344 ± 123.487 b | 297.574 ± 72.131 b | 0.9946 ± 0.002 a | |
F-value | 7.655 * | 5.340 * | 3.675 ns | 4.693 * | 7.544 * | 3.589 ns |
Growing Season | Observation Variable | MSPF | DIPF | MSI | F-Value |
---|---|---|---|---|---|
Spring | Yield (kg/ha) | 119,961.18 ± 15,863.47 a | 100,482.01 ± 10,345.32 b | 99,582.82 ± 11,169.57 b | 9.873 ** |
Water consumption (mm) | 374.12 ± 15.82 b | 344.94 ± 22.42 c | 406.69 ± 22 a | 27.764 ** | |
Water use efficiency (kg/m3) | 32.16 ± 4.75 a | 29.23 ± 3.38 a | 24.54 ± 3.03 b | 12.315 ** | |
Autumn | Yield (kg/ha) | 97,979.17 ± 12,550.56 a | 93,722.22 ± 18,965.42 a | 65,659.72 ± 12,688.55 b | 16.368 ** |
Water consumption (mm) | 266.97 ± 7.57 b | 260.18 ± 14.67 b | 282.85 ± 18.46 a | 7.950 ** | |
Water use efficiency (kg/m3) | 36.73 ± 4.83 a | 35.9 ± 6.41 a | 23.24 ± 4.51 b | 24.249 ** |
Growing Season | Treatments | Additional Labor Cost (CNY) | Irrigation Pipe Cost CNY) | Mulching Film Cost (CNY) | Fruit Yield (Kg) | Total Income (CNY) | Additional Cost Compared with MSI (CNY) | Additional Income Compared with MSI (CNY) |
---|---|---|---|---|---|---|---|---|
Spring | MSPF | 500 | 700 | 300 | 4798 | 19,192 | 800 | 4452 |
DIPF | 500 | 1300 | 300 | 4019 | 16,076 | 1400 | 736 | |
MSI | 0 | 700 | 0 | 3983 | 15,932 | 0 | 1992 | |
Autumn | MSPF | 500 | 700 | 300 | 3919 | 15,676 | 800 | 5685 |
DIPF | 500 | 1300 | 300 | 3749 | 14,996 | 1400 | 4405 | |
MSI | 0 | 700 | 0 | 2626 | 10,504 | 0 | 1313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, M.; Lu, Z.; Zhang, Y.; Wang, J. Effects of Irrigation Strategy and Plastic Film Mulching on Soil N2O Emissions and Fruit Yields of Greenhouse Tomato. Agriculture 2022, 12, 296. https://doi.org/10.3390/agriculture12020296
Li Y, Zhang M, Lu Z, Zhang Y, Wang J. Effects of Irrigation Strategy and Plastic Film Mulching on Soil N2O Emissions and Fruit Yields of Greenhouse Tomato. Agriculture. 2022; 12(2):296. https://doi.org/10.3390/agriculture12020296
Chicago/Turabian StyleLi, Yuan, Mingzhi Zhang, Zhenguang Lu, Yushun Zhang, and Jingwei Wang. 2022. "Effects of Irrigation Strategy and Plastic Film Mulching on Soil N2O Emissions and Fruit Yields of Greenhouse Tomato" Agriculture 12, no. 2: 296. https://doi.org/10.3390/agriculture12020296
APA StyleLi, Y., Zhang, M., Lu, Z., Zhang, Y., & Wang, J. (2022). Effects of Irrigation Strategy and Plastic Film Mulching on Soil N2O Emissions and Fruit Yields of Greenhouse Tomato. Agriculture, 12(2), 296. https://doi.org/10.3390/agriculture12020296