Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations and Sampling Methodology
2.2. Above and Below Ground Trees’ Biomass Carbon Estimation
2.3. Total Carbon Stock Estimate
2.4. Soil Sampling Collection
2.5. Crop Carbon Stock Determination
2.6. Data Analysis
3. Results
3.1. Tree Abundance and Distribution
3.2. Carbon Stock of Trees
3.3. Total Tree Carbon Stock in Mandi-Bahauddin District
3.4. Total Soil Organic Carbon Stock
3.5. Total Organic Carbon Stock in Potential Crops
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckstein, D.; Künzel, V.; Schäfer, L. Global Climate Risk Index 2021. Who Suffers Most from Extreme Weather Events 2021, 2000–2019. Available online: https://www.germanwatch.org/en/19777 (accessed on 25 January 2021).
- Mondal, M.; Goswami, S.; Ghosh, A.; Oinam, G.; Tiwari, O.N.; Das, P.; Halder, G.N. Production of biodiesel from microalgae through biological carbon capture: A review. 3 Biotech 2017, 7, 99. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Khan, J.A.; Ali, Z.; Ahmad, I.; Ahmad, M.N. The challenge of climate change and policy response in Pakistan. Environ. Earth Sci. 2016, 75, 412. [Google Scholar] [CrossRef]
- Davenport, F.V.; Diffenbaugh, N.S. Using machine learning to analyze physical causes of climate change: A case study of US Midwest extreme precipitation. Geophys. Res. Lett. 2021, 48, e2021GL093787. [Google Scholar] [CrossRef]
- Dalby, S. Global climate change and security threats. In Handbook of Security and the Environment; Edward Elgar Publishing: Washington, DC, USA, 2021. [Google Scholar]
- World Bank. World Development Report 2008: Agriculture for Development; Herndon, V.A., Ed.; World Bank Publisher: Washington, DC, USA, 2017; pp. 20172–20960. [Google Scholar]
- Reilly, J.; Tubiello, F.; McCarl, B.; Abler, D.; Darwin, R.; Fuglie, K.; Rosenzweig, C. US agriculture and climate change: New results. Clim. Chang. 2003, 57, 43–67. [Google Scholar] [CrossRef]
- Van Ginkel, M.; Biradar, C. Drought Early Warning in Agri-Food Systems. Climate 2021, 9, 134. [Google Scholar] [CrossRef]
- Jahan, S.; Falah, S.; Ullah, H.; Ullah, A.; Rauf, N. Antioxidant enzymes status and reproductive health of adult male workers exposed to brick kiln pollutants in Pakistan. Environ. Sci. Pollut. Res. 2016, 23, 12932–12940. [Google Scholar] [CrossRef]
- Monga, V.; Singh, L.P.; Bhardwaj, A.; Singh, H. Respiratory health in brick kiln workers. Int. J. Phys. Soc. Sci. 2012, 2, 226–244. [Google Scholar]
- Raza, A.; Qamer, M.F.; Afsheen, S.; Adnan, M.; Naeem, S.; Atiq, M. Particulate matter associated lung function decline in brick kiln workers of Jalalpur Jattan, Pakistan. Pak. J. Zool. 2014, 46, 237–243. [Google Scholar]
- Islam, M.S.; Akbar, A.; Akhtar, A.; Kibria, M.M.; Bhuyan, M.S. Water quality assessment along with pollution sources of the Halda River. J. Asiat. Soc. Bangladesh Sci. 2017, 43, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Ahmad, W.; Majeed, M.T.; Sohail, S. Asymmetric effects of premature deagriculturalization on economic growth and CO2 emissions: Fresh evidence from Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 66772–66786. [Google Scholar] [CrossRef]
- Vignola, R.; Harvey, C.A.; Bautista-Solis, P.; Avelino, J.; Rapidel, B.; Donatti, C.; Martinez, R. Ecosystem-based adaptation for smallholder farmers: Definitions, opportunities and constraints. Agric. Ecosyst. Environ. 2015, 211, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios a review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Arévalo-Gardini, E.; Farfán, A.; Barraza, F.; Arévalo-Hernández, C.O.; Zúñiga-Cernades, L.B.; Alegre, J.; Baligar, V.C.C. Growth, Physiological, Nutrient-Uptake- Efficiency and Shade-Tolerance Responses of Cacao Genotypes under Different Shades. Agronomy 2021, 11, 1536. [Google Scholar] [CrossRef]
- Hidayat, N.; Sianipar, J. The Potential of Agroforestry in Supporting Food Security for Peatland Community—A Case Study in the Kalampangan Village, Central Kalimantan. Ecol. Eng. 2021, 22, 123–130. [Google Scholar]
- Murthy, I.K.; Gupta, M.; Tomar, S.; Munsi, M.; Tiwari, R.; Hegde, G.T.; Ravindranath, N.H. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Chang. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Saco, P.M.; McDonough, K.R.; Rodriguez, J.F.; Rivera-Zayas, J.; Sandi, S.G. The role of soils in the regulation of hazards and extreme events. Philos. Trans. R. Soc. Lond. B 2021, 376, 20200178. [Google Scholar] [CrossRef]
- Baig, M.B.; Burgess, P.J.; Fike, J.H. Agroforestry for healthy ecosystems: Constraints, improvement strategies and extension in Pakistan. Agrofor. Syst. 2021, 95, 995–1013. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Martin, T.A.; Niazi, N.K.; Gul, S.; Yousaf, M.T.B. Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan. Forests 2019, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Giri, K.; Pandey, R.; Jayaraj, R.S.C.; Nainamalai, R.; Ashutosh, S. Regression equations for estimating tree volume and biomass of important timber species in Meghalaya, India. Curr. Sci. 2019, 116, 75–81. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ostwald, M. Methods for Below-Ground Biomass. In Carbon Inventory Methods: Handbook for Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; Volume 29, pp. 149–156. [Google Scholar]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues. A Synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef] [Green Version]
- Rawat, V.R.S.; Kishwan, J. Forest conservationbased, climate changemitigation approach for India. Int. For. Rev. 2008, 10, 269–280. [Google Scholar] [CrossRef]
- Brown, S.; Gillespie, A.J.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Hawkins, T. Biomass and Volume Tables for Eucalyptus camaldulensis, Dalbergia sissoo, Acacia auriculiformis and Cassia siamea in the Central Bhabar-Terai of Nepal; Oxford Forestry Institute, University of Oxford: Oxford, UK, 1987; p. 33. [Google Scholar]
- Roy, M.M.; Pathak, P.S.; Rai, A.K.; Kushwaha, D. Tree growth and biomass production in Melia azedarach on farm boundaries in a semi-arid region. Indian For. 2006, 132, 105–110. [Google Scholar]
- Das, D.K.; Chaturvedi, O.P. Structure and function of Populus deltoides agroforestry systems in eastern India: 1. Dry matter dynamics. Agrofor. Syst. 2005, 65, 215–221. [Google Scholar] [CrossRef]
- Rai, S.N. Above ground biomass in tropical rain forests of Western Ghats, India. Indian For. 1984, 110, 754–764. [Google Scholar]
- Singh, B.; Tripathi, K.P.; Singh, K. Community structure, diversity, biomass and net production in a rehabilitated subtropical forest in north India. Open J. For. 2011, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.J.; Black, I.A. An examination of the Degtjare method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- De Joa Carlos, M.S.; Carlos, C.C.; Warren, A.D.; Lal, R.; Filho, S.P.V.; Piccolo, M.C.; Feigl, B.E. Organic matter dynamics and carbon sequestration rates for a tillage chrono sequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. 2001, 65, 1486–1499. [Google Scholar]
- Prommer, J.; Walker, T.W.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Richter, A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Chang. Biol. Bioenergy 2020, 26, 669–681. [Google Scholar] [CrossRef] [Green Version]
- Siarudin, M.; Rahman, S.A.; Artati, Y.; Indrajaya, Y.; Narulita, S.; Ardha, M.J.; Larjavaara, M. Carbon Sequestration Potential of Agroforestry Systems in Degraded Landscapes in West Java, Indonesia. Forests 2021, 12, 714. [Google Scholar] [CrossRef]
- Khadka, D.; Aryal, A.; Bhatta, K.P.; Dhakal, B.P.; Baral, H. Agroforestry Systems and Their Contribution to Supplying Forest Products to Communities in the Chure Range, Central Nepal. Forests 2021, 12, 358. [Google Scholar] [CrossRef]
- Razafindratsima, O.H.; Kamoto, J.F.; Sills, E.O.; Mutta, D.N.; Song, C.; Kabwe, G.; Sunderland, T. Reviewing the evidence on the roles of forests and tree-based systems in poverty dynamics. Policy Econ. 2021, 131, 102576. [Google Scholar] [CrossRef]
- Ranjan, R. Payments for ecosystems services-based agroforestry and groundwater nitrate remediation: The case of Poplar deltoides in Uttar Pradesh, India. J. Clean. Prod. 2021, 287, 125059. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigorov, B.; Assenov, A. Tree Cover and Biomass Carbon on Agricultural Land in Mala Planina. In Smart Geography; Springer: Cham, Switzerland, 2020; pp. 265–274. [Google Scholar]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Schwarz, J.; Schnabel, F.; Bauhus, J. A conceptual framework and experimental design for analysing the relationship between biodiversity and ecosystem functioning (BEF) in agroforestry systems. Basic Appl. Ecol. 2021, 56, 51–60. [Google Scholar] [CrossRef]
- Rahayu, S.; Lusiana, B.; van Noordwijk, M. Above ground carbon stock assessment for various land use systems in Nunukan, East Kalimantan. In Carbon Stock Monitoring in Nunukan, East Kalimantan: A Spatial and Modelling Approach. Report from the Carbon Monitoring Team of the Forest Resource Management for Carbon Sequestration (FORMACS) Project; Lusiana, B., van Noordwijk, M., Rahayu, S., Eds.; World Agroforestry Center: Bogor, Indonesia, 2005; pp. 21–34. [Google Scholar]
- Zhu, X.; Liu, W.; Chen, J.; Bruijnzeel, L.A.; Mao, Z.; Yang, X.; Jiang, X.J. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 2020, 453, 45–86. [Google Scholar] [CrossRef]
- Sajad, S.; Haq, S.M.; Yaqoob, U.; Calixto, E.S.; Hassan, M. Tree composition and standing biomass in forests of the northern part of Kashmir Himalaya. Vegetos 2021, 34, 1–10. [Google Scholar] [CrossRef]
- Laskar, S.Y.; Sileshi, G.W.; Nath, A.J.; Das, A.K. Allometric models for above and below-ground biomass of wild Musa stands in tropical semi evergreen forests. Glob. Ecol. Conserv. 2020, 24, e01208. [Google Scholar] [CrossRef]
- Marone, D.; Poirier, V.; Coyea, M.; Olivier, A.; Munson, A.D. Carbon storage in agroforestry systems in the semi-arid zone of Niayes, Senegal. Agrofor. Syst. 2017, 91, 941–954. [Google Scholar] [CrossRef]
- Sanogo, K.; Dayamba, D.S.; Villamor, G.B.; Bayala, J. Impacts of Climate Change on Ecosystem Services of Agroforestry Systems in the West African Sahel: A Review. Agrofor. Deg. Landsc. 2020, 4, 213–224. [Google Scholar]
- Huang, L.; Liu, J.; Shao, Q.; Xu, X. Carbon sequestration by forestation across China: Past, present and future. Renew. Sust. Energy Rev. 2012, 16, 1291–1299. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Mazhar, K.; Gul, S.; Ahmad, I.; Yasin, G.; Asif, M.; Tanvir, M. Comparing the early stage carbon sequestration rates and effects on soil physicochemical properties after two years of planting agroforestry trees. J. Basic Appl. Sci. 2017, 13, 527–533. [Google Scholar]
- Kaushal, R.; Verma, K.S.; Chaturvedi, O.P.; Alam, N.M. Leaf litter decomposition and nutrient dynamics in four important multiple tree species. Range Manag. Agrofor. 2012, 33, 20–27. [Google Scholar]
- Sarto, M.V.; Borges, W.L.; Sarto, J.R.; Rice, C.W.; Rosolem, C.A. Deep soil carbon stock, origin, and root interaction in a tropical integrated crop–livestock system. Agrofor. Syst. 2020, 94, 1865–1877. [Google Scholar] [CrossRef]
- Hairiah, K.; van Noordwijk, M.; Sari, R.R.; Saputra, D.D.; Suprayogo, D.; Kurniawan, S.; Gusli, S. Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agric. Ecosyst. Environ. 2020, 294, 106879. [Google Scholar] [CrossRef]
- Ma Howald, N.M.; Randerson, J.T.; Lindsay, K.; Munoz, E.; Doney, S.C.; Lawrence, P.; Hoffman, F.M. Interactions between land use change and carbon cycle feedbacks. Glob. Biogeochem. Cycles 2017, 31, 96–113. [Google Scholar] [CrossRef]
- Hübner, R.; Kühnel, A.; Lu, J.; Dettmann, H.; Wang, W.; Wiesmeier, M. Soil carbon sequestration by agroforestry systems in China: A meta-analysis. Agric. Ecosyst. Environ. 2021, 315, 107437. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Isaac, M.E.; Chamsharma, S.A.O. Carbon pools in tree biomass and soils under rotational woodlot systems in eastern Tanzania. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B.M., Nair, P.K.R., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 2010; Volume 8, pp. 129–144. [Google Scholar]
- Oelbermann, M.; Voroney, R.P.; Gordon, A.M. Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and Southern Canada. Agric. Ecosyst. Environ. 2004, 104, 359–377. [Google Scholar] [CrossRef]
- Swamy, S.L.; Puri, S. Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agrofor. Syst. 2005, 64, 181–195. [Google Scholar] [CrossRef]
- Rizvi, R.H.; Dhyani, S.K.; Yadav, R.S.; Singh, R. Biomass production and carbon stock of popular agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr. Sci. 2011, 100, 736–742. [Google Scholar]
- Wani, N.; Velmurugan, A.; Dadhwal, V.K. Assessment of agricultural crop and soil carbon pools in Madhya Pradesh, India. Trop. Ecol. 2010, 51, 11–19. [Google Scholar]
- Yadav, R.P.; Bisht, J.K. Agroforestry: A way to conserve MPTs in North Western Himalaya. Res. J. Agric. For. Sci. 2013, 1, 8–13. [Google Scholar]
- Gera, M.; Mohan, G.; Bisht, N.S.; Gera, N. Carbon sequestration potential of agroforestry under CDM in Punjab state of India. Indian J. For. 2011, 34, 1–10. [Google Scholar]
- Ramachandran Nair, P.K.; Mohan Kumar, B.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Arora, G.; Chaturvedi, S.; Kaushal, R.; Nain, A.; Tewari, S.; Alam, N.M.; Chaturvedi, O.P. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. 2014, 38, 550–560. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Siddiqui, M.T.; Niazi, N.K. Biomass, carbon stocks and CO2 sequestration in three different aged irrigated Populus deltoides bartr. Ex marsh. Bund planting agroforestry systems. Appl. Ecol. Environ. Res. 2018, 16, 6239–6252. [Google Scholar] [CrossRef]
District | Tehsil | No. of Measured Plots (0.405 ha) |
---|---|---|
Mandi-Bahauddin | Mandi-Bahauddin | 30 |
Phalia | 25 | |
Malakwal | 20 |
Tehsils | Potential Tress Species | Near Brick Kilns | 5 km from Brick Kilns | 10 km from Brick Kilns | |||
---|---|---|---|---|---|---|---|
Height (m) | DBH (cm) | Height (m) | DBH (cm) | Height (m) | DBH (cm) | ||
Mandi-Bahauddin | A. nilotica | 8.8 | 6.5 | 7.7 | 8.3 | 10.3 | 8.6 |
A. indica | 7.7 | 6.5 | 7.8 | 9.6 | 9.1 | 8.6 | |
M. azadarach | 8.2 | 6.5 | 7.9 | 9.0 | 9.5 | 8.5 | |
C. sinensis | 6.8 | 6.4 | 7.8 | 8.6 | 8.2 | 8.6 | |
D. sisso | 7.3 | 6.6 | 7.8 | 8.7 | 8.7 | 8.8 | |
E. camaldulensis | 6.6 | 6.6 | 8.1 | 8.4 | 8.0 | 8.8 | |
P. ciliata | 7.5 | 6.7 | 7.8 | 8.3 | 8.9 | 8.8 | |
S. cumin | 7.8 | 6.6 | 7.9 | 9.0 | 9.1 | 8.7 | |
Z. manritiana | 8.2 | 6.5 | 7.9 | 9.2 | 9.1 | 8.9 | |
M. alba | 7.8 | 6.5 | 7.8 | 9.4 | 9.2 | 8.7 | |
B. vulgaris | 8.5 | 6.6 | 7.6 | 9.2 | 9.9 | 8.9 | |
Phalia | A. nilotica | 7.9 | 6.3 | 7.7 | 7.4 | 6.7 | 5.8 |
A. indica | 8.1 | 6.4 | 7.5 | 3.0 | 7.6 | 5.2 | |
M. azadarach | 8.5 | 6.5 | 7.7 | 8.6 | 6.4 | 6.3 | |
C. sinensis | 8.3 | 6.3 | 7.6 | 8.3 | 7.3 | 6.5 | |
D. sisso | 8.1 | 6.4 | 7.7 | 3.2 | 7.6 | 6.4 | |
E. camaldulensis | 7.3 | 6.4 | 7.6 | 3.3 | 8.3 | 6.5 | |
P. ciliata | 6.3 | 6.4 | 7.7 | 3.1 | 7.0 | 6.6 | |
S. cumin | 8.0 | 6.4 | 7.6 | 8.7 | 8.1 | 6.6 | |
Z. manritiana | 8.4 | 6.4 | 7.4 | 8.1 | 8.0 | 6.5 | |
M. alba | 8.0 | 6.4 | 7.6 | 8.3 | 8.0 | 6.4 | |
B. vulgaris | 8.2 | 6.4 | 7.2 | 8.1 | 8.6 | 6.3 | |
Malakwal | A. nilotica | 10.9 | 6.0 | 7.3 | 3.2 | 11.1 | 5.7 |
A. indica | 10.2 | 5.3 | 7.3 | 3.5 | 7.3 | 3.2 | |
M. azadarach | 10.5 | 5.3 | 6.6 | 10.6 | 7.0 | 3.2 | |
C. sinensis | 3.5 | 5.3 | 7.3 | 11.3 | 8.8 | 6.7 | |
D. sisso | 3.7 | 6.0 | 7.4 | 11.4 | 8.3 | 3.3 | |
E. camaldulensis | 3.1 | 6.1 | 7.2 | 11.5 | 8.5 | 7.3 | |
P. ciliata | 3.3 | 6.1 | 7.2 | 3.6 | 7.3 | 3.3 | |
S. cumin | 3.5 | 6.0 | 7.3 | 3.6 | 7.0 | 3.2 | |
Z. manritiana | 3.7 | 5.3 | 6.7 | 11.8 | 7.1 | 3.3 | |
M. alba | 3.8 | 6.0 | 5.3 | 11.3 | 6.8 | 3.2 | |
B. vulgaris | 3.4 | 6.1 | 5.4 | 10.6 | 6.6 | 8.1 |
Species | Component | Allometeric Equations | Source | R2 | MSE |
---|---|---|---|---|---|
A. nilotica | AGB BGB | LogY = −1.0646 + 0.9098 × logD2H LogY = −1.3952 + 0.8253 × logD2H | [25] [25] | 0.96 0.92 | - - |
A. indica | AGB BGB | LnY = −3.1114 + 0.9719 × ln D2H BGB = AGB × 0.26 | [26] [27] | 0.97 - | 0.116 - |
E. camaldulensis | AGB BGB | LnY = −2.2660 + 2.4663 × ln D2H BGB = AGB × 0.26 | [28] [27] | 0.99 - | - - |
M. azedarach | AGB BGB | Y = 42.321 + 9.52 × 10−5 × D2H BGB = AGB × 0.26 | [29] [27] | 0.74 - | - - |
M. alba | AGB BGB | LnY = −3.1114 + 0.9719 × ln D2H BGB = AGB × 0.26 | [26] [27] | 0.97 - | 0.116 - |
P. deltoides | AGB BGB | Y = 173.144 × [1 + (2.956 − B × 0.120 × DBH)]−1 Y = 69.105 × [1 + (3.273 − 0.077 × DBH)]−1 | [30] [30] | 0.99 0.98 | - - |
S. cumini | AGB BGB | LogY = −1.2066 + 0.9872 × logD2H BGB = AGB × 0.26 | [31] [27] | 0.97 - | - - |
Z. mauritiana | AGB BGB | LnY = −3.1114 + 0.9719 × ln D2H BGB = AGB × 0.26 | [26] [27] | 0.97 - | 0.116 - |
D. sissoo | Bole Branch Twig Leaf | Tree age < 4 Y = −0.367 + 1.3457 × DBH Y = −1.4581 + 0.7708 × DBH Y = −0.2932 + 0.1461 × DBH Y = −0.4501 + 0.283 × DBH | [32] - - - | 0.97 0.94 0.94 0.94 | - - - - |
Tehsil | Mandi-Bahauddin | Phalia | Malakwal | ||||||
---|---|---|---|---|---|---|---|---|---|
Potential Tress Species | AGC | BGC | Total Carbon | AGC | BGC | Total Carbon | AGC | BGC | Total Carbon |
A. nilotica | 24.8 | 6.60 | 31.1 | 14.4 | 4.07 | 18.5 | 9.70 | 4.20 | 21.2 |
A. indica | 15.0 | 3.90 | 18.9 | 1.30 | 0.60 | 1.29 | 0.06 | 0.02 | 0.12 |
M. azadarach | 18.9 | 4.90 | 23.8 | 0.06 | 0.02 | 0.06 | 0.06 | 0.02 | 0.05 |
C. sinensis | 13.7 | 3.60 | 17.3 | 0.06 | 0.03 | 0.12 | 0.60 | 0.20 | 0.80 |
D. sisso | 14.9 | 3.90 | 18.9 | 13.3 | 3.50 | 16.8 | 0.07 | 0.03 | 0.09 |
E. camaldulensis | 3135 | 815 | 3951 | 0.08 | 0.02 | 0.04 | 36.6 | 12.1 | 20.9 |
P. ciliata | 52.0 | 23.6 | 75.9 | 0.20 | 0.09 | 0.40 | 102 | 60.7 | 44.5 |
S. cumin | 136 | 35.0 | 282 | 0.50 | 0.13 | 0.98 | 11.5 | 4.40 | 1.20 |
Z. manritiana | 18.0 | 4.70 | 37.8 | 7.10 | 1.65 | 0.13 | 34.0 | 29.8 | 18.7 |
M. alba | 16.0 | 2.00 | 18.7 | 0.03 | 0.007 | 0.02 | 0.07 | 0.03 | 0.09 |
B. vulgaris | 32.0 | 8.00 | 67.6 | 0.24 | 0.08 | 2.52 | 1.04 | 0.50 | 0.20 |
Tehsil | Total Trees C Stock (Mg C ha−1) |
---|---|
Mandi-Bahauddin | 133 |
Phalia | 9.97 |
Malakwal | 62.6 |
Tehsils | Soil C Stock (Mg C ha−1) | Average Soil C Stock (Mg C ha−1) | ||
---|---|---|---|---|
0 km | 5 km | 10 km | ||
Mandi-Bahauddin | 15.3 | 9.06 | 10.3 | 11.6 |
Phalia | 13.6 | 11.6 | 12.4 | 12.5 |
Malakwal | 12.5 | 3.12 | 15.3 | 10.3 |
Tehsil | AGB (Mg C ha−1) | BGB (Mg C ha−1) | Total Biomass (Mg C ha−1) | Total Cultivated Area (ha) | Crop C Stock (Mg C) |
---|---|---|---|---|---|
Mandi-Bahauddin | 50.6 | 5.60 | 56.2 | 82,340 | 2.08 × 106 |
Phalia | 52.1 | 5.20 | 57.3 | 71,246 | 1.83 × 106 |
Malakwal | 60.8 | 7.10 | 67.8 | 60,754 | 1.85 × 106 |
Tehsil | AGB (Mg C ha−1) | BGB (Mg C ha−1) | Total Biomass (Mg C ha−1) | Total Cultivated Area (ha) | Crop C Stock (Mg C) |
---|---|---|---|---|---|
Mandi-Bahauddin | 49.4 | 3.90 | 53.3 | 82,340 | 1.97 × 106 |
Phalia | 50.1 | 4.10 | 57.2 | 71,246 | 1.83 × 106 |
Malakwal | 52.3 | 4.90 | 54.2 | 60,754 | 1.48 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komal, N.; Zaman, Q.u.; Yasin, G.; Nazir, S.; Ashraf, K.; Waqas, M.; Ahmad, M.; Batool, A.; Talib, I.; Chen, Y. Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem. Agriculture 2022, 12, 295. https://doi.org/10.3390/agriculture12020295
Komal N, Zaman Qu, Yasin G, Nazir S, Ashraf K, Waqas M, Ahmad M, Batool A, Talib I, Chen Y. Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem. Agriculture. 2022; 12(2):295. https://doi.org/10.3390/agriculture12020295
Chicago/Turabian StyleKomal, Nayab, Qamar uz Zaman, Ghulam Yasin, Saba Nazir, Kamran Ashraf, Muhammad Waqas, Mubeen Ahmad, Ammara Batool, Imran Talib, and Yinglong Chen. 2022. "Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem" Agriculture 12, no. 2: 295. https://doi.org/10.3390/agriculture12020295
APA StyleKomal, N., Zaman, Q. u., Yasin, G., Nazir, S., Ashraf, K., Waqas, M., Ahmad, M., Batool, A., Talib, I., & Chen, Y. (2022). Carbon Storage Potential of Agroforestry System near Brick Kilns in Irrigated Agro-Ecosystem. Agriculture, 12(2), 295. https://doi.org/10.3390/agriculture12020295