Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Data Analyses
2.4. Statistical Analysis
3. Results
3.1. Distribution of Soil Aggregates
3.2. Organic C in Bulk Soil and Aggregate Fractions
3.3. Mineralization of Organic C in Aggregate
3.4. Microbial Community Composition in Aggregate
4. Discussions
4.1. Trichoderma Bio-Fertilizer Changed Aggregate Distribution and Its Associated Organic C Content
4.2. Mineralization of Organic C in Aggregates
4.3. Bio-Fertilizer Alter Microbial Community in Aggregates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardgett, R.D.; McAlister, E. The measurement of soil fungal: Bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fert. Soils 1999, 29, 282–290. [Google Scholar] [CrossRef]
- Zhang, H.J.; Wang, S.J.; Zhang, J.X.; Tian, C.J.; Luo, S.S. Biochar application enhances microbial interactions in mega-aggregates of farmland black soil. Soil Till. Res. 2021, 213, 105145. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, M.G.; Ali Shah, S.A.; Abrar, M.M.; Sun, N.; Wang, B.R.; Cai, Z.J.; Saeed, Q.; Naveed, M.; Mehmood, K.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Zhang, Y.C.; Zuo, Q.Y.; Du, B.B.; Chen, W.L.; Wei, D.; Huang, Q.Y. Contrasting responses of bacterial and fungal communities to aggregate-size fractions and longterm fertilizations in soils of northeastern China. Sci. Total Environ. 2018, 635, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Qian, H.Y.; Wang, X.Y.; Chen, L.J.; Liu, M.Q.; Li, H.X.; Sun, B. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol. Biochem. 2018, 119, 22–31. [Google Scholar] [CrossRef]
- Kan, Z.R.; Ma, S.T.; Liu, Q.Y.; Liu, B.Y.; Virk, A.L.; Qi, J.Y.; Zhao, X.; Rattan, L.; Zhang, H.L. Carbon sequestration and mineralization in soil aggregates under long-term conservation tillage in the North China Plain. Catena 2020, 188, 104428. [Google Scholar] [CrossRef]
- Li, X.P.; Liu, C.L.; Zhao, H.; Gao, F.; Ji, G.N.; Hu, F.; Li, H.X. Similar positive effects of beneficial bacteria, nematodes and earthworms on soil quality and productivity. Appl. Soil. Ecol. 2018, 130, 202–208. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, H.; Ali Shah, S.A.; Abrar, M.M.; Maitlo, A.A.; Kubar, K.A.; Saeed, Q.; Kamran, M.; Naveed, M.; Wang, B.R.; et al. Long-term fertilization alters chemical composition and stability of aggregate-associated organic carbon in a Chinese red soil: Evidence from aggregate fractionation, C mineralization, and 13C NMR analyses. J. Soil Sediment. 2021, 21, 2483–2496. [Google Scholar] [CrossRef]
- Zhu, L.X.; Zhang, F.L.; Li, L.L.; Liu, T.X. Soil C and aggregate stability were promoted by bio-fertilizer on the North China Plain. J. Soil Sci. Plant Nutr. 2021, 21, 2355–2363. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, J.; Shao, M.A. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. J. Environ. Manag. 2021, 278, 111504. [Google Scholar] [CrossRef]
- Qiu, L.P.; Zhu, H.S.; Liu, J.; Yao, Y.F.; Wang, X.; Rong, G.H.; Zhao, X.N.; Shao, M.A.; Wei, X.R. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agr. Ecosyst. Environ. 2021, 307, 107232. [Google Scholar] [CrossRef]
- Reeves, S.H.; Somasundaram, J.; Wang, W.J.; Heenan, M.A.; Finn, D.; Dalal, R.C. Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol. Geoderma 2019, 337, 1086–1096. [Google Scholar] [CrossRef]
- Wang, X.Y.; Bian, Q.; Jiang, Y.J.; Zhu, L.Y.; Chen, Y.; Liang, Y.T.; Sun, B. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 2021, 153, 108062. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Wilson, B.R.; Lockwood, P.V.; Daniel, H.; Young, I.M. Soil organic carbon mineralization rates in aggregates under contrasting land uses. Geoderma 2014, 216, 10–18. [Google Scholar] [CrossRef]
- Xie, J.Y.; Hou, M.M.; Zhou, Y.T.; Wang, R.J.; Zhang, S.L.; Yang, X.Y.; Sun, B.H. Carbon sequestration and mineralization of aggregate-associated carbon in an intensively cultivated Anthrosol in north China as affected by long term fertilization. Geoderma 2017, 296, 1–9. [Google Scholar] [CrossRef]
- Bai, N.; Zhang, H.; Li, S.; Zheng, X.; Zhang, J.; Zhang, H.; Zhou, S.; Sun, H.; Lv, W. Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system. PeerJ 2019, 6, e6171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.Y.; Sun, B.H.; Zhang, S.L. Trends of yield and soil fertility in a long-term wheat-maize System. J. Integr. Agric. 2014, 13, 402–414. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Luo, S.S.; Wang, S.J.; Tian, L.; Shi, S.H.; Xu, S.Q.; Yang, F.; Li, X.J.; Wang, Z.C.; Tian, C.J. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 2018, 329, 108–117. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.B.; Han, Y.; Chen, L.; Wang, D. Responses of soil aggregates and bacterial communities to soil-Pb immobilization induced by bio-fertilizer. Chemosphere 2019, 220, 828–836. [Google Scholar] [CrossRef]
- Kong, A.Y.Y.; Scow, K.M.; Córdova-Kreylos, A.L.; Holmes, W.E.; Six, J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol. Biochem. 2011, 43, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Guibaud, G.; Bordas, F.; Saaid, A.; Paul, D.; Van Hullebusch, E. Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloid. Surf. B 2008, 63, 48–54. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Somasundaram, J.; Chaudhary, R.; Kumar, D.A.; Biswas, A.K.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Jha, P.; Sankar, M.; Patra, A.K.; et al. Effect of contrasting tillage and cropping systems on soil aggregation, carbon pools and aggregate-associated carbon in rainfed Vertisols. Eur. J. Soil Sci. 2018, 69, 879–891. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Bei, S.H.; Li, X.; Kuyper, T.W.; Chadwick, D.R.; Zhang, J.L. Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community. Sci. Total Environ. 2022, 815, 152882. [Google Scholar] [CrossRef]
- Trejo, A.; de-Bashan, L.E.; Hartmann, A.; Hernandez, J.P.; Rothballer, M.; Schmid, M.; Bashan, Y. Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ. Exp. Bot. 2012, 75, 65–73. [Google Scholar] [CrossRef]
- Yilmaz, E.; Snmez, M. The role of organic/bio–fertilizer amendment on aggregate stability and organic carbon content in different aggregate scales. Soil Till. Res. 2017, 168, 118–124. [Google Scholar] [CrossRef]
- Du, Z.L.; Zhao, J.K.; Wang, Y.D.; Zhang, Q.Z. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J. Soil Sediment. 2017, 17, 581–589. [Google Scholar] [CrossRef]
- Shao, H.Y.; Li, Z.Y.; Liu, D.; Li, Y.F.; Lu, L.; Wang, X.D.; Zhang, A.F.; Wang, Y.L. Effects of manure application rates on the soil carbon fractions and aggregate stability. Environ. Sci. 2019, 40, 4691–4699. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Wilson, B.R.; Lockwood, P.V.; Daniel, H.; Young, I.M. Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia. Soil Till. Res. 2015, 146, 193–203. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Chen, X.F.; Liu, M.; Jiang, C.Y.; Wu, M.; Li, Z.P. Organic carbon mineralization in aggregate fractions of red paddy soil under different fertilization treatments. Sci. Agric. Sin. 2018, 51, 3325–3334. (In Chinese) [Google Scholar] [CrossRef]
- Ashraf, M.N.; Hu, C.; Wu, L.; Duan, Y.; Zhang, W.; Aziz, T.; Cai, A.; Abrar, M.M.; Xu, M. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. J. Soil Sediment. 2020, 20, 3103–3113. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Miñón, J.; Pascual, A.; Montero, O.; Navas, L.M.; Rad, C. Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Sci. Total Environ. 2017, 605–606, 610–617. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Sun, B.; Jin, C.; Wang, F. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biol. Biochem. 2013, 60, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Y.; Wang, K.; Hao, X.; Chen, W.; Huang, Q. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 2020, 154, 103640. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Liu, L.L.; Li, Y.; Song, Q.; Wang, C.J.; Cai, A.D.; Wu, L.; Xu, M.G.; Zhang, W.J. Long-term fertilization leads to specific PLFA finger-prints in Chinese Hapludults soil. J. Integr. Agric. 2020, 19, 1354–1362. [Google Scholar] [CrossRef]
- Vries, F.T.D.; Hoffland, E.; Eekeren, N.V.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, A.; Rillig, M.C. Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi? Soil Biol. Biochem. 2015, 88, 298–302. [Google Scholar] [CrossRef]
- Naylor, D.; De Graaf, S.; Purdom, E.; Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017, 11, 2691. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, R.; Bhatia, A.; Das, T.K.; Lata, S.; Kumar, A.; Tomer, R.; Singh, G.; Kumar, S.; Biswas, A.K. Aggregate-associated N and global warming potential of conservation agriculture-based cropping of maize-wheat system in the north-western Indo-Gangetic Plains. Soil Till. Res. 2018, 182, 66–77. [Google Scholar] [CrossRef]
Treatment | Distribution of Soil Aggregate (%) | MWD (mm) | |||
---|---|---|---|---|---|
>2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | ||
CF | 34.90 ± 1.34 c | 26.08 ± 2.40 c | 26.54 ± 1.46 a | 12.48 ± 3.92 a | 1.04 ± 0.04 d |
BF10 | 41.43 ± 0.90 b | 31.71 ± 1.00 b | 21.93 ± 1.59 b | 4.93 ± 1.95 b | 1.22 ± 0.01 c |
BF20 | 48.94 ± 0.96 a | 36.60 ± 0.96 a | 13.28 ± 0.40 c | 1.18 ± 0.33 b | 1.41 ± 0.00 a |
BF30 | 47.46 ± 1.00 a | 34.29 ± 1.28 a | 14.89 ± 1.27 c | 3.37 ± 1.01 b | 1.36 ± 0.03 b |
BF50 | 46.33 ± 1.04 a | 35.43 ± 0.63 a | 15.23 ± 0.89 c | 3.01 ± 1.15 b | 1.35 ± 0.02 b |
Treatment | Rate of Organic C Respiration (%) | ||||
---|---|---|---|---|---|
>2 mm | 0.25–2 mm | 0.053–0.25 mm | <0.053 mm | Bulk Soil | |
CF | 1.78 ± 0.12 aA | 1.74 ± 0.14 aA | 1.61 ± 0.05 aA | 0.49 ± 0.12 aC | 1.56 ± 0.12 abB |
BF10 | 1.71 ± 0.14 aA | 1.44 ± 0.22 aC | 1.44 ± 0.24 aC | 0.38 ± 0.05 aD | 1.54 ± 0.22 abB |
BF20 | 1.41 ± 0.20 bA | 0.97 ± 0.13 bB | 0.92 ± 0.14 bB | 0.26 ± 0.13 aC | 1.35 ± 0.11 bA |
BF30 | 1.61 ± 0.11 abA | 0.98 ± 0.21 bB | 1.00 ± 0.35 bB | 0.32 ± 0.05 aC | 1.58 ± 0.12 abA |
BF50 | 1.79 ± 0.11 aA | 1.05 ± 0.15 bB | 1.08 ± 0.12 bB | 0.40 ± 0.08 aC | 1.72 ± 0.12 aA |
Diversity Index | Treatment | Aggregate Fractions (mm) | Bulk Soil | |||
---|---|---|---|---|---|---|
>2 | 0.25–2 | 0.053–0.25 | <0.053 | |||
H | CF | 1.33 ± 0.12 a | 1.26 ± 0.01 a | 1.28 ± 0.11 a | 1.25 ± 0.02 a | 1.32 ± 0.01 a |
BF10 | 1.23 ± 0.11 a | 1.25 ± 0.08 a | 1.29 ± 0.12 a | 1.27 ± 0.03 a | 1.24 ± 0.01 b | |
BF20 | 1.17 ± 0.08 a | 1.25 ± 0.02 a | 1.22 ± 0.01 a | 1.30 ± 0.02 a | 1.24 ± 0.01 b | |
BF30 | 1.21 ± 0.08 a | 1.20 ± 0.13 a | 1.13 ± 0.01 b | 1.15 ± 0.02 b | 1.16 ± 0.03 c | |
BF50 | 1.14 ± 0.11 a | 1.20 ± 0.06 a | 1.14 ± 0.01 b | 1.19 ± 0.02 b | 1.19 ± 0.02 c | |
Fungi PLFA/Bacteria PLFA | CF | 0.078 ± 0.004 c | 0.08 ± 0.008 b | 0.09 ± 0.006 b | 0.08 ± 0.002 c | 0.09 ± 0.003 d |
BF10 | 0.091 ± 0.004 b | 0.08 ± 0.005 b | 0.10 ± 0.008 b | 0.09 ± 0.000 c | 0.11 ± 0.002 b | |
BF20 | 0.091 ± 0.002 b | 0.09 ± 0.006 a | 0.11 ± 0.007 a | 0.10 ± 0.002 a | 0.12 ± 0.005 a | |
BF30 | 0.102 ± 0.005 a | 0.08 ± 0.002 b | 0.10 ± 0.003 b | 0.09 ± 0.003 b | 0.10 ± 0.001 c | |
BF50 | 0.089 ± 0.005 b | 0.08 ± 0.003 b | 0.09 ± 0.002 b | 0.09 ± 0.003 b | 0.10 ± 0.006 c | |
G+ PLFA/G− PLFA | CF | 1.03 ± 0.006 b | 1.27 ± 0.015 a | 1.20 ± 0.008 a | 1.23 ± 0.016 a | 1.18 ± 0.023 a |
BF10 | 1.13 ± 0.016 a | 1.18 ± 0.032 b | 1.16 ± 0.020 b | 1.24 ± 0.008 a | 1.10 ± 0.006 b | |
BF20 | 1.10 ± 0.021 a | 1.14 ± 0.012 c | 1.13 ± 0.010 c | 1.05 ± 0.020 c | 1.08 ± 0.010 b | |
BF30 | 1.06 ± 0.062 b | 1.14 ± 0.017 c | 1.17 ± 0.016 b | 1.15 ± 0.016 b | 1.11 ± 0.015 b | |
BF50 | 1.12 ± 0.022 a | 1.15 ± 0.011 bc | 1.17 ± 0.010 b | 1.06 ± 0.003 c | 1.11 ± 0.030 b |
Index | Bacteria PLFA | Fungi PLFA | Fungi PLFA/Bacteria PLFA | G+ PLFA/G− PLFA | H |
---|---|---|---|---|---|
Organic C in aggregate | 0.865 ** | 0.881 ** | 0.328 | −0.450 * | −0.665 ** |
Mineralization of C in aggregate | 0.215 | 0.268 | 0.247 | −0.209 | −0.395 |
Aggregate distribution | 0.114 | 0.141 * | 0.090 | 0.180 | 0.077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Cao, M.; Sang, C.; Li, T.; Zhang, Y.; Chang, Y.; Li, L. Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain. Agriculture 2022, 12, 1001. https://doi.org/10.3390/agriculture12071001
Zhu L, Cao M, Sang C, Li T, Zhang Y, Chang Y, Li L. Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain. Agriculture. 2022; 12(7):1001. https://doi.org/10.3390/agriculture12071001
Chicago/Turabian StyleZhu, Lixia, Mengmeng Cao, Chengchen Sang, Tingxuan Li, Yanjun Zhang, Yunxia Chang, and Lili Li. 2022. "Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain" Agriculture 12, no. 7: 1001. https://doi.org/10.3390/agriculture12071001
APA StyleZhu, L., Cao, M., Sang, C., Li, T., Zhang, Y., Chang, Y., & Li, L. (2022). Trichoderma Bio-Fertilizer Decreased C Mineralization in Aggregates on the Southern North China Plain. Agriculture, 12(7), 1001. https://doi.org/10.3390/agriculture12071001