Spectroscopic Investigation on the Effects of Biochar and Soluble Phosphorus on Grass Clipping Vermicomposting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Site and Origin of Raw Material
2.2. Composting of Grass Clippings
2.3. Vermicomposting
2.4. Physical, Chemical and Spectroscopy Characterisation
2.5. Data Analysis
3. Results
3.1. Earthworm Reproduction with Different Substrates
3.2. Chemical and Spectroscopy Analysis of the Composts and Vermicomposts
3.3. Progress of Humification According to Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Cunha, T.J.F.; Madari, B.E.; Benites, V.M.; Canellas, L.P.; Novotny, E.H.; Moutta, R.O. Chemical fractionation of organic matter and humic acid characterization in anthropogenic dark earth soils of the Brazilian Amazon region. Acta Amazon. 2007, 37, 91–98. [Google Scholar] [CrossRef]
- Novotny, E.H.; Hayes, M.H.B.; Madari, B.; Bonagamba, T.J.; Azevedo, E.R.; Souza, A.A.; Song, G.; Nogueira, C.M.; Mangrich, A.S. Lessons from the Terra Preta de Índios of the Amazon region for the utilisation of charcoal for soil amendment. J. Braz. Chem. Soc. 2009, 20, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Novotny, E.H.; Maia, C.M.B.F.; Carvalho, M.T.M.; Madari, B.E. Biochar: Pyrogenic carbon for agricultural use—A critical review. Rev. Bras. Cienc. Solo 2015, 39, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Novotny, E.H.; Azevedo, E.R.; Bonagamba, T.J.; Cunha, T.J.F.; Madari, B.E.; Benites, V.M.; Hayes, M.H.B. Studies of the compositions of humic acids from Amazonian dark earth soils. Environ. Sci. Technol. 2007, 41, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Noguera, D.; Rondón, M.; Laossi, K.; Hoyos, V.; Lavelle, P.; Cruz de Carvalho, M.H. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biol. Biochem. 2010, 42, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, M.; Okimori, Y. Pioneering works in biochar research, Japan. Aust. J. Soil Res. 2010, 48, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Kookana, R.S.; Sarmah, A.K.; van Zwieten, L.; Krull, E.; Singh, B. Biochar application to soil: Agronomic and environ-mental benefits and unintended consequences. Adv. Agron. 2011, 112, 103–143. [Google Scholar] [CrossRef]
- Petter, F.A.; Madari, B.E.; Silva, M.A.S.D.; Carneiro, M.A.C.; Carvalho, M.T.D.M.; Marimon Júnior, B.H.; Pacheco, L.P. Soil fertility and upland rice yield after biochar application in the Cerrado. Pesqui. Agropecu. Bras. 2012, 47, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Marumoto, T. Inoculation with arbuscular mycorrhizal fungi: The status quo in Japan and future prospects. Plant Soi 2002, 244, 273–279. [Google Scholar] [CrossRef]
- Sanpa, S.; Imaki, K.; Sumiyoshi, S.; Shibata, A.; Matsumiya, Y.; Kubo, M. Effect of charcoal from woody waste on the soil bacterial biomass and its plant-growth promoting effect. Wood Carbonization Res. 2006, 2, 37–42. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Lavelle, P.; Barros, E.; Blanchart, E.; Brown, G.; Desjardins, T.; Mariani, L. SOM management in the tropics. Why feed the soil macrofauna? Nutr. Cycl. Agroecos. 2001, 61, 53–61. [Google Scholar] [CrossRef]
- Whiston, R.A.; Seal, K.J. The occurrence of cellulases in the earthworm Eisenia foetida. Biol. Wastes 1988, 25, 239–242. [Google Scholar] [CrossRef]
- Dores-Silva, P.R.; Landgraf, M.D.; Rezende, M.O.O. Chemical monitoring of vermicomposting from domestic sewage sludge. Quim. Nova 2011, 34, 956–961. [Google Scholar] [CrossRef]
- Aquino, A.M.; Oliveira, A.M.G.; Loureiro, D.C. Integrating composting and vermicomposting on the recycling of domestic organic waste. Embrapa Agrobiol.-Circ. Técnica 2005, 12, 1–4. [Google Scholar]
- Giannopoulos, G.; Pulleman, M.M.; Van Groenigen, J.W. Interactions between residue placement and earthworm ecological strategy affect aggregate turnover and N2O dynamics in agricultural soil. Soil Biol. Biochem. 2010, 42, 618–625. [Google Scholar] [CrossRef]
- Abdul Rida, A.M.M.; Bouché, M.B. The eradication of an earthworm genus by heavy metals in Southern France. Appl. Soil Ecol. 1995, 2, 45–52. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Xu, Y.; Cui, Y.; Li, D.; Kong, Z. Comparative effects of Cd and Pb on biochemical response and DNA damage in the earthworm Eisenia fetida (Annelida, Oligochaeta). Chemosphere 2009, 74, 621–625. [Google Scholar] [CrossRef]
- Hartenstein, R. Effect of aromatic compounds, humic acids and lignins on growth of the earthworm Eisenia foetida. Soil Biol. Biochem. 1982, 14, 595–599. [Google Scholar] [CrossRef]
- Loureiro, S.; Soares, A.M.; Nogueira, A.J. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environ. Pollut. 2005, 138, 121–131. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. Soil Quality—Avoidance Test for Determining the Quality of Soils and Effects of Chemicals on Behaviour—Part 1: Test with Earthworms (Eisenia fetida and Eisenia andrei), Geneva. 2008. Available online: https://www.sis.se/api/document/preview/910491/ (accessed on 11 December 2019).
- Sarathchandra, S.U.; Lee, A.; Perrott, K.W.; Rajan, S.S.S.; Oliver, E.H.A.; Gravett, I.M. Effects of phosphate fertilizer applications on microorganisms in pastoral soil. Aust. J. Soil Res. 1993, 31, 299–309. [Google Scholar] [CrossRef]
- Abbiramy, K.S.K.; Ross, P.R.; Paramanandham, J.P. Assessment of acute toxicity of superphosphate to Eisenia fetida using paper contact method. Asian J. Plant Sci. Res. 2013, 3, 112–115. [Google Scholar]
- Nakasaki, K.; Hiraoka, S.; Nagata, H. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 1998, 64, 1015–4020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benites, V.M.; Bezerra, F.B.; Mouta, R.O.; Assis, I.R.; Santos, R.C.; Conceição, M. Production of organic fertilisers from composting of waste from the maintenance of grass areas of the Rio de Janeiro International airport. In Boletim de Pesquisa e Desenvolvimento; Embrapa-CNPS: Rio de Janero, Brazil, 2004. [Google Scholar]
- SAS Institute Inc. SAS® Visual Statistics 7.1: User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Curry, J.P.; Schmidt, O. The feeding ecology of earthworms—A review. Pedobiologia 2006, 50, 463–477. [Google Scholar] [CrossRef]
- Kaplan, D.L.; Hartenstein, R.; Neuhauser, E.F.; Malecki, M.R. Physicochemical requirements in the environment of the earthworm Eisenia foetida. Soil Biol. Biochem. 1980, 12, 347–352. [Google Scholar] [CrossRef]
- Saueia, C.H.R.; Le Bourlegat, F.M.; Mazzilli, B.P.; Fávaro, D.I.T. Availability of metals and radionuclides present in phosphogypsum and phosphate fertilizers used in Brazil. J. Radioanal. Nucl. Chem. 2013, 297, 189–195. [Google Scholar] [CrossRef]
- Nahmani, J.; Hodson, M.E.; Black, S. A review of studies performed to assess metal uptake by earthworms. Environ. Pollut. 2007, 145, 402–424. [Google Scholar] [CrossRef]
- Czimczik, C.I.; Masiello, C.A. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21, GB3005. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fert. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Warnock, D.D.; Lehmann, J.; Kuyper, T.W.; Rillig, M.C. Mycorrhizal responses to biochar in soil—Concepts and mechanisms. Plant Soil 2007, 300, 9–20. [Google Scholar] [CrossRef]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
Treatments | Grass (kg) | Biochar (kg) | Phosphate (kg) |
---|---|---|---|
Grass | 200 | - | - |
Grass + biochar | 160 | 143 | - |
Grass + phosphate | 200 | - | 25.6 |
Grass + phosphate + biochar | 160 | 143 | 25.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novotny, E.H.; Balieiro, F.d.C.; Auccaise, R.; Benites, V.d.M.; Coutinho, H.L.d.C. Spectroscopic Investigation on the Effects of Biochar and Soluble Phosphorus on Grass Clipping Vermicomposting. Agriculture 2022, 12, 1011. https://doi.org/10.3390/agriculture12071011
Novotny EH, Balieiro FdC, Auccaise R, Benites VdM, Coutinho HLdC. Spectroscopic Investigation on the Effects of Biochar and Soluble Phosphorus on Grass Clipping Vermicomposting. Agriculture. 2022; 12(7):1011. https://doi.org/10.3390/agriculture12071011
Chicago/Turabian StyleNovotny, Etelvino Henrique, Fabiano de Carvalho Balieiro, Ruben Auccaise, Vinícius de Melo Benites, and Heitor Luiz da Costa Coutinho. 2022. "Spectroscopic Investigation on the Effects of Biochar and Soluble Phosphorus on Grass Clipping Vermicomposting" Agriculture 12, no. 7: 1011. https://doi.org/10.3390/agriculture12071011
APA StyleNovotny, E. H., Balieiro, F. d. C., Auccaise, R., Benites, V. d. M., & Coutinho, H. L. d. C. (2022). Spectroscopic Investigation on the Effects of Biochar and Soluble Phosphorus on Grass Clipping Vermicomposting. Agriculture, 12(7), 1011. https://doi.org/10.3390/agriculture12071011