The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. The σ-Convergence Test
2.1.2. The β-Convergence Test
2.1.3. The Club Convergence Test
2.2. Data
2.3. Descriptive Analysis on the Evolutionary Trends of Cereal Yield in ECA
3. Results
3.1. The σ-Convergence Test
3.2. The β-Convergence Test
3.3. The Club Convergence Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations; International Fund for Agricultural Development; United Nations Children’s Fund; World Food Programme; World Health Organization. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- International Food Policy Research Institute. 2021 Global Food Policy Report: Transforming Food Systems after COVID-19; International Food Policy Research Institute: Washington, DC, USA, 2021. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Europe and Central Asia–Regional Overview of Food Security and Nutrition 2021; Food and Agriculture Organization of the United Nations: Budapest, Hungary, 2021. [Google Scholar]
- Tian, X.; Yu, X. Crop yield gap and yield convergence in African countries. Food Secur. 2019, 11, 1305–1319. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Qing, P.; Koemle, D.; Yu, X. Wheat yield convergence and its driving factors in countries along the Belt and Road. Ecosyst. Health Sus. 2020, 6, 1819168. [Google Scholar] [CrossRef]
- Senapati, N.; Semenov, M.A. Assessing yield gap in high productive countries by designing wheat ideotypes. Sci. Rep. 2019, 9, 5516. [Google Scholar] [CrossRef]
- Schils, R.; Olesen, J.E.; Kersebaum, K.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; et al. Cereal yield gaps across Europe. Eur. J. Agron. 2018, 101, 109–120. [Google Scholar] [CrossRef]
- Kahiluotoa, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R.; et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavas, J.; Falco, S.D.; Adinolfi, F.; Capitanio, F. Weather effects and their long-term impact on the distribution of agricultural yields: Evidence from Italy. Eur. Rev. Agric. Econ. 2019, 46, 29–51. [Google Scholar] [CrossRef]
- Nsafon, B.E.K.; Lee, S.; Huh, J. Responses of yield and protein composition of wheat to climate change. Agriculture 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Agnolucci, P.; De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Change 2020, 159, 385–405. [Google Scholar] [CrossRef] [Green Version]
- International Food Policy Research Institute. 2022 Global Food Policy Report: Climate Change and Food Systems; International Food Policy Research Institute: Washington, DC, USA, 2022. [Google Scholar]
- Ukraine: Humanitarian Response Update (13 May 2022). Available online: https://www.fao.org/3/cc0120en/cc0120en.pdf (accessed on 16 May 2022).
- Food and Agriculture Organization of the United Nations. Food Outlook–Biannual Report on Global Food Markets; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- World Bank. Commodity Markets Outlook: The Impact of the War in Ukraine on Commodity Markets, April 2022; World Bank: Washington, DC, USA, 2022. [Google Scholar]
- Kijek, A.; Kijek, T.; Nowak, A. Club convergence of labour productivity in agriculture: Evidence from EU countries. Agr. Econ. Czech 2020, 66, 391–401. [Google Scholar] [CrossRef]
- Arata, L.; Fabrizi, E.; Sckokai, P. A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data. Econ. Model. 2020, 90, 190–208. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Convergence. J. Polit. Econ. 1992, 100, 223–251. [Google Scholar] [CrossRef]
- Sinha, R. Crop yield convergence across districts in India’s poorest state. J. Prod. Anal. 2022, 57, 41–59. [Google Scholar] [CrossRef]
- Cottis, R.A. Electrochemical Noise for Corrosion Monitoring. In Techniques for Corrosion Monitoring, 2nd ed.; Yang, L.T., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 99–122. [Google Scholar]
- Burnett, J.W. Club convergence and clustering of U.S. energy-related CO2 emissions. Resour. Energy Econ. 2016, 46, 62–84. [Google Scholar] [CrossRef] [Green Version]
- Bhattaraia, K.; Qin, W.G. Convergence in labor productivity across provinces and production sectors in China. J. Econ. Asymmetries 2022, 25, e00247. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Sul, D. Transition modeling and econometric. Econometrica 2007, 75, 1771–1855. [Google Scholar] [CrossRef] [Green Version]
- Trueblood, M.A.; Arnade, C. Crop yield convergence: How Russia’s yield performance has compared to global yield leaders. Comp. Econ. Stud. 2001, 43, 59–81. [Google Scholar] [CrossRef]
- Powell, J.P.; Rutten, M. Convergence of European wheat yields. Renew. Sustain. Energy Rev. 2013, 28, 53–70. [Google Scholar] [CrossRef]
- Döring, T.F.; Reckling, M. Detecting global trends of cereal yield stability by adjusting the coefficient of variation. Eur. J. Agron. 2018, 99, 30–36. [Google Scholar] [CrossRef]
- Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.; Bekenov, M.; Kholov, B.; Ibragimov, N.; Kobilov, R.; et al. Impact of climate change on wheat productivity in Central Asia. Agr. Ecosys. Environ. 2013, 178, 78–99. [Google Scholar] [CrossRef]
- van Ittersum, M.K.; Cassman, K.G.; Grassini, P.; Wolf, J.; Tittonell, P.; Hochman, Z. Yield gap analysis with local to global relevance—A review. Field Crop. Res. 2013, 143, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.V.; Reidsma, P.; Baudron, F.; Laborte, A.G.; Giller, K.E.; van Ittersum, M.K. How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Glob. Food Secur. 2021, 30, 100552. [Google Scholar] [CrossRef]
- Swinnen, J.; Burkitbayeva, S.; Schierhorn, F.; Prishchepov, A.V.; Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Glob. Food Secur. 2017, 14, 38–53. [Google Scholar] [CrossRef]
- Lecerf, R.; Ceglar, A.; López-Lozano, R.; van Der Velde, M.; Baruth, B. Assessing the information in crop model and meteorological indicators to forecast crop yield over Europe. Agr. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Technological diffusion, convergence, and growth. J. Econ. Growth 1997, 2, 1–26. [Google Scholar] [CrossRef]
- Frankel, J. Regional Trading Blocs in the World Economic System; Institute for International Economics: Washington, DC, USA, 1997. [Google Scholar]
- Solow, R.M. A contribution to the theory of economic growth. Q. J. Econ. 1956, 70, 65–94. [Google Scholar] [CrossRef]
- Mankiw, N.G.; Romer, D.; Well, D.N. A contribution to the empirics of economic growth. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Sala-i-Martin, X. The classical approach to convergence analysis. Econ. J. 1996, 106, 1019–1036. [Google Scholar] [CrossRef]
- Miller, S.M.; Upadhyay, M.P. Total factor productivity and the convergence hypothesis. J. Macroecon. 2002, 24, 267–286. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, X.; Zhou, Y.; Yu, X. Regional income inequality in China revisited: A perspective from club convergence. Econ. Model. 2016, 56, 50–58. [Google Scholar] [CrossRef]
- World Bank Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 18 February 2022).
- Definition and Classification of Commodities: Cereals and Cereal Product. Available online: https://www.fao.org/WAICENT/faoinfo/economic/faodef/fdef01e.htm (accessed on 18 February 2022).
- Zimnitskaya, H.; Geldern, J. Is the Caspian Sea a sea, and why does it matter? J. Eurasian Stud. 2011, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sakwa, R. The Soviet collapse: Contradictions and neo-modernization. J. Eurasian Stud. 2013, 4, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Flavell, A.J.; George, T.S.; Leat, P.; Mullholland, B.; Ramsay, L.; Revoredo-Giha, C.; Russell, J.; Steffenson, B.J.; Swanston, J.S.; et al. Crops that feed the world 4. Barley: A resilient crop? Strengths and weaknesses in the context of food security. Food Sec. 2011, 3, 141–178. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A.; Unnikrishnan, V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—A review. J. Food Sci. Technol. 2015, 52, 662–675. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, D. Impact of trade openness on food security: Evidence from panel data for Central Asian countries. Foods 2021, 10, 3012. [Google Scholar] [CrossRef]
- Akramov, K.T.; Omuraliev, N. Institutional Change, Rural Services, and Agricultural Performance in Kyrgyzstan; International Food Policy Research Institute: Washington, DC, USA, 2009. [Google Scholar]
- Kazbekov, J.; Qureshi, A.S. Agricultural Extension in Central Asia: Existing Strategies and Future Needs; International Water Management Institute: Colombo, Sri Lanka, 2011. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Strengthening the Capacity of Agricultural Extension Services in Central Asia on Sustainable Intensification of Crop Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Babu, S.C.; Akramov, K.T. Agrarian reforms and food policy process in Tajikistan. Cent. Asian J. Water Res. 2022, 8, 27–48. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Extension and Advisory Services: At the Frontline of the Response to COVID-19 to Ensure Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Liu, W.; Liu, L.; Gao, J. Adapting to climate change: Gaps and strategies for Central Asia. Mitig. Adapt. Strat. Gl. 2020, 25, 1439–1459. [Google Scholar] [CrossRef]
- Qin, J.; Duan, W.; Chen, Y.; Dukhovny, V.A.; Sorokin, D.; Li, Y.; Wang, X. Comprehensive evaluation and sustainable development of water–energy–food–ecology systems in Central Asia. Renew. Sust. Energ. Rev. 2022, 157, 112061. [Google Scholar] [CrossRef]
Variables | Label | Operational Definition | Measurement Unit | Data Source |
---|---|---|---|---|
Temperature Change | TC | Difference in temperature between adjacent meteorological years | degree celsius | FAO |
Fertilizers Use Intensity | FUI | Ratio of amount of fertilizer used in agricultural sector to arable land area | kilograms per hectare | FAO |
Pesticides Use Intensity | PUI | Ratio of amount of pesticide used in agricultural sector to arable land area | kilograms per hectare | FAO |
Natural Disasters | ND | Ratio of total number of injured, affected, and homeless population as a direct result of natural disasters to total population | % | EM-DAT and WDI |
Variables | Mean | Minimum | Median | Maximum | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
TC | 1.199 | −0.794 | 1.264 | 3.693 | 0.715 | −0.119 | 0.044 |
FUI | 154.420 | 0.404 | 123.691 | 1544.889 | 161.277 | 3.991 | 24.507 |
PUI | 2.955 | 0.006 | 1.493 | 37.250 | 3.784 | 3.031 | 14.882 |
ND | 0.129 | 0.000 | 0.001 | 38.835 | 1.652 | 20.287 | 448.718 |
Variables | Yield | TC | FUI | PUI | ND |
---|---|---|---|---|---|
Yield | 1.000 | ||||
TC | 0.136 *** | 1.000 | |||
FUI | 0.604 *** | −0.039 *** | 1.000 | ||
PUI | 0.344 *** | −0.033 *** | 0.332 *** | 1.000 | |
ND | −0.044 *** | −0.015 *** | −0.045 ** | –0.046 ** | 1.000 |
Region | CV | Mean | Minimum | Median | Maximum | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
ECA | 0.147 | 5.025 | 3.639 | 4.995 | 6.084 | 0.737 | −0.128 | −1.034 |
Eastern Europe | 0.222 | 2.705 | 1.931 | 2.560 | 3.683 | 0.600 | 0.399 | −1.272 |
Western Europe | 0.068 | 6.804 | 5.984 | 6.844 | 7.760 | 0.463 | −0.024 | −0.618 |
Southern Europe | 0.138 | 3.976 | 2.995 | 3.962 | 4.864 | 0.547 | 0.144 | −0.383 |
Northern Europe | 0.087 | 5.244 | 4.212 | 5.240 | 6.223 | 0.456 | 0.230 | 0.445 |
Central Asia | 0.202 | 1.427 | 0.778 | 1.504 | 1.945 | 0.288 | −0.689 | −0.207 |
World Average | 0.128 | 3.408 | 2.758 | 3.368 | 4.108 | 0.437 | 0.175 | −1.296 |
Ranking | Item | Accumulated Area Harvested (Million Hectares) | Accumulated Production (Million Tons) |
---|---|---|---|
1 | Wheat | 2109.688 | 6778.149 |
2 | Barley | 913.548 | 2759.090 |
3 | Maize | 437.037 | 2588.663 |
4 | Oats | 234.012 | 492.514 |
5 | Rye | 195.385 | 476.793 |
6 | Triticale | 79.085 | 309.295 |
7 | Buckwheat | 46.042 | 36.630 |
8 | Mixed grain | 43.481 | 122.809 |
9 | Millet | 27.246 | 27.972 |
10 | Rice paddy | 26.121 | 129.965 |
11 | Cereals nes | 8.747 | 15.265 |
12 | Sorghum | 6.809 | 25.543 |
13 | Canary seed | 0.371 | 0.397 |
Country | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Albania | 3.348 | 2.435 | 4.899 | 1.701 |
Austria | 5.182 | 4.897 | 9.676 | 3.878 |
Belarus | 2.873 | 2.669 | 3.844 | 2.430 |
Belgium | 6.022 | 5.403 | 7.567 | 3.816 |
Bosnia and Herzegovina | 3.284 | 2.812 | 4.288 | 2.364 |
Bulgaria | 3.519 | 3.318 | 4.527 | 1.757 |
Croatia | 4.475 | 3.578 | 5.993 | 2.635 |
Czech Republic | 4.775 | 4.079 | 6.400 | 3.000 |
Denmark | 7.226 | 5.294 | 2.331 | 4.823 |
Estonia | 2.776 | 2.439 | NA | 2.073 |
Finland | 3.612 | 3.457 | NA | 3.293 |
France | 6.929 | 6.186 | 8.626 | 4.410 |
Germany | 7.334 | 6.029 | 8.840 | 4.634 |
Greece | 2.603 | 2.582 | 10.322 | 1.894 |
Hungary | 4.314 | 3.848 | 6.055 | 2.503 |
Iceland | NA | 0.699 | NA | NA |
Ireland | 8.700 | 6.784 | NA | 7.189 |
Italy | 3.570 | 3.741 | 9.280 | 2.338 |
Latvia | 3.231 | 2.297 | NA | 1.913 |
Lithuania | 3.507 | 2.648 | 3.735 | 1.872 |
Luxembourg | 4.198 | 3.760 | 5.115 | 3.359 |
Malta | 3.782 | 3.226 | NA | NA |
Montenegro | 1.556 | 1.286 | 2.018 | 1.208 |
Netherlands | 8.462 | 6.298 | 9.695 | 5.341 |
North Macedonia | 2.827 | 2.589 | 3.910 | 1.491 |
Norway | 4.389 | 3.681 | NA | 3.800 |
Poland | 3.938 | 3.249 | 5.789 | 2.523 |
Portugal | 1.717 | 1.756 | 6.329 | 1.071 |
Moldova | 2.586 | 2.055 | 2.952 | 1.380 |
Romania | 2.999 | 2.838 | 3.739 | 1.755 |
Russian Federation | 2.009 | 1.862 | 3.412 | 1.503 |
Serbia | 2.049 | 1.801 | 2.888 | 1.215 |
Slovak Republic | 4.071 | 3.467 | 5.582 | 2.097 |
Slovenia | 4.407 | 3.836 | 7.057 | 2.633 |
Spain | 2.832 | 2.720 | 9.760 | 1.758 |
Sweden | 6.027 | 4.291 | 0.596 | 3.861 |
Switzerland | 5.818 | 6.206 | 9.383 | 5.119 |
Ukraine | 3.061 | 2.380 | 4.241 | 1.933 |
United Kingdom | 7.749 | 5.803 | NA | 5.639 |
Kazakhstan | 0.997 | 1.151 | 4.062 | 1.120 |
Kyrgyzstan | 2.180 | 1.906 | 5.491 | 2.185 |
Tajikistan | 2.003 | 1.264 | 7.048 | 0.868 |
Turkmenistan | 1.847 | 1.165 | 1.428 | NA |
Uzbekistan | 3.551 | 1.464 | 6.343 | 0.192 |
Variables | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Estimate | ||||
−0.004 *** (−3.167) | −0.003 ** (−2.404) | −0.006 *** (−3.320) | −0.005 *** (−5.612) | |
AR(1) | 0.349 (1.428) | 0.301 (1.587) | 0.122 (0.366) | 0.036 (0.108) |
Constant | 8.854 *** (3.360) | 5.485 ** (2.630) | 12.868 *** (3.447) | 10.047 *** (5.949) |
R-squared | 0.537 | 0.602 | 0.519 | 0.548 |
F-statistic | 10.042 *** | 5.664 ** | 9.294 *** | 10.503 *** |
DW-statistic | 1.908 | 1.917 | 1.852 | 1.869 |
Number of observations | 30 | 30 | 30 | 30 |
Phillips-Perron unit root test | ||||
CV | −8.936 *** | −6.267 *** | −7.252 *** | −6.183 *** |
Variables | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Estimate | ||||
−0.012 *** (−3.509) | −0.018 ** (−2.631) | −0.025 * (−1.968) | −0.031 *** (−3.309) | |
AR(1) | 0.244 (1.097) | −0.236 (−0.662) | ||
Constant | 0.024 *** (5.226) | 0.032 *** (4.446) | 0.060 ** (2.573) | 0.038 *** (4.815) |
R-squared | 0.628 | 0.523 | 0.380 | 0.411 |
F-statistic | 12.315 *** | 7.338 *** | 8.267 *** | 8.613 *** |
DW-statistic | 2.014 | 1.946 | 1.935 | 1.928 |
Number of observations | 43 | 44 | 36 | 41 |
1.428% | 2.583% | 4.530% | 6.901% | |
Phillips-Perron unit root test | ||||
−6.936 *** | −6.963 *** | −6.950 *** | −6.734 *** | |
−6.831 *** | −7.466 *** | −8.332 *** | −6.237 *** |
Cereal/Country | 1991–1995 | 1996–2000 | 2001–2005 | 2006–2010 | 2011–2015 | 2016–2020 | Changes | |
---|---|---|---|---|---|---|---|---|
Wheat | ||||||||
Lowest 5 | Kazakhstan | 0.894 | 0.848 | 1.017 | 1.066 | 1.162 | 1.176 | 31.57% |
Turkmenistan | 2.010 | 1.923 | 2.989 | 1.845 | 1.259 | 1.460 | −27.37% | |
Portugal | 1.686 | 1.417 | 1.143 | 1.936 | 1.626 | 2.495 | 48.01% | |
Montenegro | NA | NA | NA | 3.199 | 3.045 | 3.092 | −3.36% | |
Tajikistan | 0.872 | 1.121 | 1.804 | 2.477 | 2.797 | 3.120 | 257.84% | |
Highest 5 | Germany | 6.599 | 7.322 | 7.385 | 7.454 | 7.812 | 7.435 | 12.67% |
Denmark | 6.853 | 7.185 | 7.168 | 7.217 | 7.374 | 7.561 | 10.34% | |
United Kingdom | 7.290 | 7.824 | 7.720 | 7.829 | 7.869 | 7.964 | 9.25% | |
Netherlands | 8.227 | 8.216 | 8.402 | 8.519 | 8.681 | 8.725 | 6.06% | |
Ireland | 7.703 | 8.594 | 8.832 | 8.671 | 9.354 | 9.045 | 17.41% | |
Barley | ||||||||
Lowest 5 | Turkmenistan | 2.058 | 0.555 | 0.816 | 1.379 | 1.425 | 1.166 | −43.33% |
Kazakhstan | 1.021 | 0.946 | 1.124 | 1.200 | 1.316 | 1.502 | 47.06% | |
Tajikistan | 0.702 | 0.743 | 1.354 | 1.522 | 1.495 | 1.907 | 171.59% | |
Montenegro | NA | NA | NA | 2.396 | 2.620 | 2.698 | 12.57% | |
Iceland | NA | NA | NA | NA | 3.187 | 3.557 | 11.62% | |
Highest 5 | France | 5.698 | 6.268 | 6.247 | 6.360 | 6.500 | 6.044 | 6.08% |
Germany | 5.338 | 5.794 | 5.915 | 6.052 | 6.553 | 6.525 | 22.24% | |
Switzerland | 5.630 | 6.099 | 6.092 | 6.147 | 6.624 | 6.648 | 18.10% | |
Netherlands | 5.766 | 6.178 | 5.951 | 6.215 | 6.818 | 6.858 | 18.94% | |
Ireland | 5.800 | 6.390 | 6.496 | 6.754 | 7.708 | 7.557 | 30.28% | |
Maize | ||||||||
Lowest 5 | Turkmenistan | 3.714 | 0.669 | 1.032 | 1.353 | 1.401 | 1.139 | −69.34% |
Montenegro | NA | NA | NA | 3.391 | 4.391 | 4.324 | 27.52% | |
Sweden | NA | NA | NA | NA | NA | 5.959 | NA | |
Denmark | NA | NA | NA | 4.811 | 6.074 | 6.950 | 44.48% | |
Serbia | NA | NA | NA | 4.882 | 5.533 | 6.914 | 41.63% | |
Highest 5 | Netherlands | 7.938 | 8.412 | 8.859 | 11.456 | 12.238 | 9.267 | 16.74% |
Switzerland | 8.476 | 9.100 | 8.345 | 9.445 | 10.421 | 10.513 | 24.04% | |
Austria | 8.069 | 9.494 | 9.615 | 10.364 | 9.918 | 10.597 | 31.32% | |
Greece | 9.962 | 9.669 | 10.224 | 10.291 | 10.921 | 10.866 | 9.07% | |
Spain | 6.792 | 9.170 | 9.591 | 10.057 | 11.241 | 11.710 | 72.39% | |
Oats | ||||||||
Lowest 5 | Uzbekistan | 1.192 | 1.000 | NA | NA | NA | NA | NA |
Kazakhstan | 1.261 | 0.896 | 1.096 | 1.132 | 1.288 | 1.301 | 3.24% | |
Tajikistan | 0.671 | 0.423 | 0.805 | 1.096 | 0.993 | 1.352 | 101.46% | |
Portugal | 0.821 | 0.911 | 0.799 | 1.385 | 1.092 | 1.421 | 73.18% | |
Montenegro | NA | NA | NA | 2.137 | 2.384 | 2.727 | 27.61% | |
Highest 5 | Denmark | 4.510 | 5.153 | 4.927 | 4.416 | 5.005 | 4.924 | 9.18% |
Netherlands | 5.389 | 5.445 | 5.496 | 5.054 | 5.664 | 4.997 | −7.28% | |
Switzerland | 5.047 | 5.321 | 5.123 | 5.015 | 5.161 | 5.046 | −0.02% | |
United Kingdom | 5.257 | 5.928 | 5.869 | 5.713 | 5.665 | 5.403 | 2.78% | |
Ireland | 6.540 | 6.759 | 7.206 | 7.372 | 7.633 | 7.622 | 16.54% |
Variables | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Estimate | ||||
−0.365 *** (−17.568) | −0.393 *** (−17.938) | −0.308 *** (−14.298) | −0.509 *** (−20.357) | |
Constant | 0.478 *** (18.052) | 0.437 *** (18.350) | 0.510 *** (15.124) | 0.451 *** (20.301) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.309 | 0.294 | 0.281 | 0.331 |
F-statistic | 7.410 *** | 6.958 ** | 5.964 *** | 8.007 *** |
Number of observations | 1247 | 1276 | 1044 | 1189 |
1.567% | 1.722% | 1.270% | 2.454% | |
Redundant Fixed Effects Test | ||||
Cross-section/periodchi2 | 355.067 *** | 353.669 *** | 253.205 *** | 392.123 *** |
Hausman Test | ||||
Cross-section/periodchi2 | 213.209 *** | 234.031 *** | 124.719 *** | 333.381 *** |
Levin, Lin & Chu unit root test | ||||
−26.327 *** | −30.056 *** | −17.920 *** | −21.643 *** | |
−22.836 *** | −21.077 *** | −16.294 *** | −21.764 *** |
Variables | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Eastern Europe | ||||
−0.711 *** (−14.197) | −0.714 *** (−13.768) | −0.751 *** (−15.545) | −0.796 *** (−13.791) | |
Constant | 0.856 *** (14.490) | 0.758 *** (13.995) | 0.751 *** (17.483) | 0.568 *** (13.800) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.659 | 0.662 | 0.797 | 0.618 |
Number of observations | 290 | 290 | 290 | 290 |
4.276% | 4.317% | 4.798% | 5.480% | |
Western Europe | ||||
−0.128 *** (−3.945) | −0.160 *** (−4.353) | −0.165 *** (−4.358) | −0.149 *** (−4.171) | |
Constant | 0.245 *** (4.216) | 0.269 *** (4.695) | 0.355 *** (4.566) | 0.226 *** (4.336) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.366 | 0.325 | 0.447 | 0.370 |
Number of observations | 203 | 203 | 203 | 203 |
0.473% | 0.601% | 0.621% | 0.556% | |
Southern Europe | ||||
−0.387 *** (−9.198) | −0.493 *** (−11.709) | −0.282 *** (−7.563) | −0.537 *** (−10.281) | |
Constant | 0.493 *** (11.997) | 0.437 *** (18.136) | 0.504 *** (8.178) | 0.339 *** (10.455) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.762 | 0.784 | 0.421 | 0.460 |
Number of observations | 348 | 348 | 319 | 319 |
1.685% | 2.345% | 1.141% | 2.652% | |
Northern Europe | ||||
−0.650 *** (−14.458) | −0.319 *** (−6.829) | −0.185 * (−2.372) | −0.632 *** (−11.272) | |
Constant | 1.161 *** (21.812) | 0.406 *** (7.163) | 0.177 ** (3.148) | 0.786 *** (11.395) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.673 | 0.518 | 0.426 | 0.716 |
Number of observations | 261 | 290 | 87 | 261 |
3.618% | 1.327% | 0.705% | 3.450% | |
Central Asia | ||||
−0.303 *** (−4.663) | −0.386 *** (−5.161) | −0.167 *** (−3.423) | −0.636 *** (−6.307) | |
Constant | 0.217 *** (4.895) | 0.121 *** (3.964) | 0.277 *** (4.183) | 0.109 ** (3.136) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.417 | 0.423 | 0.675 | 0.549 |
Number of observations | 145 | 145 | 145 | 116 |
1.242% | 1.684% | 0.629% | 3.488% |
Variables | Wheat | Barley | Maize | Oats |
---|---|---|---|---|
Lower-middle-income economies | ||||
−0.247 *** (−3.522) | −0.576 *** (−5.847) | −0.170 ** (−3.221) | −0.591 *** (−6.058) | |
Constant | 0.267 *** (4.067) | 0.317 *** (5.871) | 0.344 *** (3.735) | 0.189 *** (4.622) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.517 | 0.502 | 0.498 | 0.493 |
Number of observations | 116 | 116 | 116 | 116 |
0.977% | 2.958% | 0.643% | 3.079% | |
Upper-middle-income economies | ||||
−0.433 *** (−10.926) | −0.580 *** (−9.966) | −0.368 *** (−8.566) | −0.640 *** (−11.567) | |
Constant | 0.501 *** (17.694) | 0.351 *** (10.013) | 0.450 *** (8.930) | 0.330 *** (11.300) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.821 | 0.447 | 0.391 | 0.504 |
Number of observations | 348 | 348 | 348 | 319 |
1.959% | 2.995% | 1.585% | 3.526% | |
High-income economies | ||||
−0.350 *** (−13.853) | −0.315 *** (−12.669) | −0.248 *** (−9.444) | −0.415 *** (−14.522) | |
Constant | 0.535 *** (14.140) | 0.426 *** (13.090) | 0.471 *** (10.028) | 0.470 *** (14.671) |
yes | yes | yes | yes | |
Cross-section fixed effects | yes | yes | yes | yes |
Period fixed effects | yes | yes | yes | yes |
R-squared | 0.326 | 0.298 | 0.274 | 0.342 |
Number of observations | 783 | 812 | 580 | 754 |
1.484% | 1.305% | 0.983% | 1.851% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Fu, T. The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia. Agriculture 2022, 12, 1009. https://doi.org/10.3390/agriculture12071009
Sun Z, Fu T. The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia. Agriculture. 2022; 12(7):1009. https://doi.org/10.3390/agriculture12071009
Chicago/Turabian StyleSun, Zhilu, and Teng Fu. 2022. "The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia" Agriculture 12, no. 7: 1009. https://doi.org/10.3390/agriculture12071009
APA StyleSun, Z., & Fu, T. (2022). The Evolutionary Trends and Convergence of Cereal Yield in Europe and Central Asia. Agriculture, 12(7), 1009. https://doi.org/10.3390/agriculture12071009