Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Climatic Conditions
2.2. Treatment Details
2.3. Soil Sampling, Processing and Analysis
2.4. Gas Sampling and GHG Flux Measurement
- Box volume (V) = height of the box × length of the box × breadth of the box
- Effective box volume (EVB) = V mL = V1 mL
- Effective box volume at STP (EVBSTP) = (V1 × t1)/t2
- Where, t1 273 °K; t2 = temperature at the time of 30 min flux taken
- A = cross section area of the box = (length of the box × breadth of the box)
- T = time difference of flux recorded = (30–0) min = 30 min
2.5. Statistical Analysis
3. Results
3.1. Soil Bulk Density
3.2. Aggregate Size Distribution
3.3. Mean Weight Diameter
3.4. Water Stable Aggregates
3.5. Soil Organic Carbon (SOC)
3.6. Aggregate Associated Carbon
3.7. SOC Stocks
3.8. Greenhouse Gas Fluxes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blanco-Canqui, H.; Ruis, S.J. No-tillage and soil physical environment. Geoderma 2018, 326, 164–200. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keesstra, S.; Cerdà, A. Soil erosion as an environmental concern in vineyards: The case study of Celler del Roure, Eastern Spain, by means of rainfall simulation experiments. Beverages 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.K.; Chopra, U.K.; Singh, A.K.; Mohanty, M.; Somasundaram, J.; Chaudhary, R.S. Soil Physical Quality as Affected by Management Practices Under Maize—Wheat System. Natl. Acad. Sci. Lett. 2014, 37, 13–18. [Google Scholar] [CrossRef]
- Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 2020, 108, 104–111. [Google Scholar] [CrossRef]
- Ibrahim, M.; Khan, A.; Ali, W.; Akbar, H. Mulching techniques: An approach for offsetting soil moisture deficit and enhancing manure mineralization during maize cultivation. Soil Tillage Res. 2020, 200, 104631. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Gregorich, E.G.; McLaughlin, N.B.; Zhang, X.; Guo, Y.; Gao, Y.; Liang, A. Evaluating storage and pool size of soil organic carbon in degraded soils: Tillage effects when crop residue is returned. Soil Tillage Res. 2019, 192, 215–221. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Carbon and nitrogen content of soil organic matter and microbial biomass under long-term crop rotation and tillage in Illinois, USA. Agriculture 2018, 8, 37. [Google Scholar] [CrossRef] [Green Version]
- Das, T.K.; Saharawat, Y.S.; Bhattacharyya, R.; Sudhishri, S.; Bandyopadhyay, K.K.; Sharma, A.R.; Jat, M.L. Conservation agriculture effects on crop and water productivity, profitability and soil organic carbon accumulation under a maize-wheat cropping system in the North-western Indo-Gangetic Plains. Field Crops Res. 2018, 215, 222–231. [Google Scholar] [CrossRef]
- Parihar, C.M.; Singh, A.K.; Jat, S.L.; Ghosh, A.; Dey, A.; Nayak, H.S.; Parihar, M.D.; Mahala, D.M.; Yadav, R.K.; Rai, V.; et al. Dependence of temperature sensitivity of soil organic carbon decomposition on nutrient management options under conservation agriculture in a sub-tropical Inceptisol. Soil Tillage Res. 2019, 190, 50–60. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Rudrappa, L.; Singh, D.; Swarup, A.; Bhadraray, S. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize-wheat-cowpea cropping system. Geoderma 2008, 144, 370–378. [Google Scholar] [CrossRef]
- Teklu, E. Tillage effects on physical qualities of a vertisol in the central highlands of Ethiopia. Afr. J. Environ. Sci. Technol. 2011, 5, 1008–1016. [Google Scholar]
- Tellez-Rio, A.; Vallejo, A.; Garcia-Marco, S.; Martin-Lammerding, D.; Tenorio, J.L.; Rees, R.M.; Guardia, G. Conservation Agriculture practices reduce the global warming potential of rainfed low N input semi-arid agriculture. Eur. J. Agron. 2017, 84, 95–104. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Somasundaram, J.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar]
- Swanepoel, C.M.; Swanepoel, L.H.; Smith, H.J. A review of conservation agriculture research in South Africa. S. Afr. J. Plant Soil 2018, 35, 297–306. [Google Scholar] [CrossRef]
- Gonzalez-Sanchez, E.J.; Veroz-Gonzalez, O.; Conway, G.; Moreno-Garcia, M.; Kassam, A.; Mkomwa, S.; Ordoñez-Fernandez, R.; Triviño-Tarradas, P.; Carbonell-Bojollo, R. Meta-analysis on carbon sequestration through Conservation Agriculture in Africa. Soil Tillage Res. 2019, 190, 22–30. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Hati, K.M.; Jha, P.; Dalal, R.C.; Somasundaram, J.; Dang, Y.P.; Kopittke, P.M.; Kirchhof, G.; Menzies, N.W. 50 years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol. Soil Tillage Res. 2021, 214, 105163. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Friedman, B.; Cheng, Q.; Tsai, P.; Schim, E.; Kleinfeld, D.; Lyden, P.D. Severe blood-brain barrier disruption and surrounding tissue injury. Stroke 2009, 40, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Ammann, C.; Neftel, A.; Jocher, M.; Fuhrer, J.; Leifeld, J. Effect of management and weather variations on the greenhouse gas budget of two grasslands during a 10-year experiment. Agric. Ecosyst. Environ. 2020, 292, 106814. [Google Scholar] [CrossRef]
- Czyz, E.A.; Dexter, A.R. Soil physical properties as affected by traditional, reduced and no-tillage for winter wheat. Int. Agrophys. 2009, 23, 319–326. [Google Scholar]
- Hill, R.L.; Curse, R.U. Tillage effects onsoil water retention and pore size distribution of two Mollisols. Soil Sci. Soc. Am. J. 1985, 49, 1264–1270. [Google Scholar] [CrossRef]
- Pranagal, J.; Lipiec, J.; Dom, H. Changes in pore distribution and stability of two soils under long term tillage systems. Int. Agrophys. 2005, 19, 165–174. [Google Scholar]
- Sheehy, J.; Regina, K.; Alakukku, L.; Six, J. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northen European agroecosystems. Soil Tillage Res. 2015, 150, 107–113. [Google Scholar] [CrossRef]
- Sundermeier, A.P.; Islam, K.R.; Raut, Y.; Reeder, R.C.; Dick, W.A. Not-ill impacts of soil biophysical carbon sequestration. Soil Sci. Soc. Am. J. 2011, 75, 1779–1788. [Google Scholar] [CrossRef]
- Haas, E.; Carozzi, M.; Massad, R.; Butterbach-Bahl, K.; Scheer, C. Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Sci. Total Environ. 2022, 836, 154932. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F.; Gallego-Elvira, B. Influence of the water source on the carbon footprint of irrigated agriculture: A regional study in South-Eastern Spain. Agronomy 2021, 11, 351. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Wang, W.J.; Reeves, S.; Gibson, I. Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilisation. Soil Tillage Res. 2011, 112, 133–139. [Google Scholar] [CrossRef]
- Nisar, S.; Benbi, D.K.; Toor, A.S. Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic Plains. Energy 2021, 229, 120661. [Google Scholar] [CrossRef]
- Wu, H.; Huang, H.; Tang, J.; Chen, W.; He, Y. Net greenhouse gas emissions from agriculture in China: Estimation, spatial correlation and convergence. Sustainability 2019, 11, 4817. [Google Scholar] [CrossRef] [Green Version]
- Tirol-Padre, A.; Rai, M.; Gathala, M.; Sharma, S.; Kumar, V.; Sharma, P.C.; Sharma, D.K.; Wassmann, R.; Ladha, J. Assessing the performance of the photo-acoustic infrared gas monitor for measuring CO2, N2O, and CH4 fluxes in two major cereal rotations. Glob. Chang. Biol. 2014, 20, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Biswas, J.C.; Salahin, N.; Alam, M.K.; Akhter, S.; Akhtar, S.; Maniruzzaman, M.; Hossain, M.S. Tillage systems influence on greenhouse gas emission factor and global warming potential under rice-mustard-rice cropping system. Arch. Agron. Soil Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Oenema, O.; Velthof, G.; Kuikman, P. Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture. Nutr. Cycl. Agroecosyst. 2001, 60, 301–315. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Lal, R.; Kimble, J.M. Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio. Soil Sci. Soc. Am. J. 2000, 64, 286–293. [Google Scholar] [CrossRef]
- Pathak, H.; Prasad, S.; Bhatia, A.; Singh, S.; Kumar, S.; Singh, J.; Jain, M.C. Methane emission from rice-wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide application. Agric. Ecosyst. Environ. 2003, 97, 309–316. [Google Scholar] [CrossRef]
- Ussiri, D.A.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Besnard, E.; Chenu, C.; Balesdent, J.; Puget, P.; Arrouays, D. Fate of particulate organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 1996, 47, 495–503. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.K.; Lal, R. Effect of land use management on greenhouse gas emissions from water stable aggregates. Geoderma 2014, 232, 363–372. [Google Scholar] [CrossRef]
- Mangalassery, S.; Sjögersten, S.; Sparkes, D.L.; Sturrock, C.J.; Mooney, S.J. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases. Soil Tillage Res. 2013, 132, 39–46. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of Soil Analysis: Part I. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monographs; NWISRL Publications: Madison, WI, USA, 1986; Volume 9, pp. 425–442. [Google Scholar]
- Van Bavel, H.M. Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci. Soc. Am. J. 1950, 14, 20–23. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- Kinsella, J. The effects of various tillage systems on soil compaction. In Farming for a Better Environment; Soil and Water Conservation Society: Ankeny, IA, USA, 1995; pp. 15–17. [Google Scholar]
- Sithole, N.J.; Magwaza, L.S.; Mafongoya, P.L. Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil Tillage Res. 2016, 162, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Devine, S.; Markewitz, D.; Hendrix, P.; Coleman, D. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLoS ONE 2014, 9, e84988. [Google Scholar] [CrossRef] [Green Version]
- Arai, M.; Minamiya, Y.; Tsuzura, H.; Watanabe, Y.; Yagioka, A.; Kaneko, N. Changes in water stable aggregate and soil carbon accumulation in a no-tillage with weed mulch management site after conversion from conventional management practices. Geoderma 2014, 221, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Hati, K.M.; Chaudhary, R.S.; Mandal, K.G.; Bandyopadhyay, K.K.; Singh, R.K.; Sinha, N.K.; Mohanty, M.; Somasundaram, J.; Saha, R. Effects of tillage, residue and fertilizer nitrogen on crop yields, and soil physical properties under soybean-wheat rotation in vertisols of Central India. Agric. Res. 2015, 4, 48–56. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Tuti, M.D.; Kundu, S.; Bisht, J.K.; Bhatt, J.C. Conservation Tillage Impacts on Soil Aggregation and Carbon Pools in a Sandy Clay Loam Soil of the Indian Himalayas. Soil Sci. Soc. Am. J. 2012, 76, 617–627. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Arshad, M.A. Particulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Sci. Soc. Am. J. 1997, 61, 1382–1386. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Total and young organic matter distribution in aggregates of silty cultivated soils. Eur. J. Soil Sci. 1995, 46, 449–459. [Google Scholar] [CrossRef]
- Pinheiro, E.F.M.; Pereira, M.G.; Anjos, L.H.C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil. Soil Tillage Res. 2004, 77, 79–84. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv. Agron. 2014, 124, 1–36. [Google Scholar]
- Guo, Y.; Fan, R.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Sci. Total Environ. 2020, 703, 134617. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 5, 221–268. [Google Scholar]
- Swanepoel, C.M.; Rötter, R.P.; Van der Laan, M.; Annandale, J.G.; Beukes, D.J.; du Preez, C.C.; Swanepoel, L.H.; van der Merwe, A.; Hoffmann, M.P. The benefits of conservation agriculture on soil organic carbon and yield in southern Africa are site-specific. Soil Tillage Res. 2018, 183, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Lal, R. Tillage and drainage impact on soil quality, aggregate stability, carbon and nitrogen pools. Soil Tillage Res. 2008, 100, 89–98. [Google Scholar] [CrossRef]
- Mando, A.; Ouattara, B.; Sedogo, M.; Stroosnijder, L.; Ouattara, K.; Brussard, L.; Vanlauwe, B. Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions. Soil Tillage Res. 2005, 80, 95–101. [Google Scholar] [CrossRef]
- Li, X.G.; Wang, Z.F.; Ma, Q.F.; Li, F.M. Crop cultivation and intensive grazing affect organic C pools and aggregate stability in arid grassland soil. Soil Tillage Res. 2007, 95, 172–181. [Google Scholar] [CrossRef]
- Chung, H.; Ngo, K.J.; Plante, A.; Six, J. Evidence for carbon saturation in a highly structured and organic-matter-rich soil. Soil Sci. Soc. Am. J. 2009, 74, 130–138. [Google Scholar] [CrossRef]
- Lopez-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Mu, Z.J.; Huang, A.Y.; Ni, J.P.; Li, J.Q.; Liu, Y.Y.; Shi, S.; Xie, D.T.; Hatano, R. Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China. J. Soil Sci. Plant Nutr. 2013, 13, 566–578. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.; Chen, L.; Dygert, C.; Dick, W. Tillage and crop rotation impacts on greenhouse gas fluxes from soil at two long-term agronomic experimental sites in Ohio. J. Soil Water Conserv. 2014, 69, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Omonode, R.A.; Smith, D.R.; Gál, A.; Vyn, T.J. Soil nitrous oxide emissions in corn following three decades of tillage and rotation treatments. Soil Sci. Soc. Am. J. 2011, 75, 152–163. [Google Scholar] [CrossRef] [Green Version]
- Maag, M.; Vinther, F.P. Effect of temperature and water on gaseous emissions from soils treated with animal slurry. Soil Sci. Soc. Am. J. 1999, 63, 858–865. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and no-tilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Halvorson, A.D.; Mosier, A.R.; Reule, C.A.; Bausch, W.C. Nitrogen and tillage effects on irrigated continuous corn yields. Agronomy 2006, 98, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Koga, N.; Sawamoto, T.; Tsuruta, H. Life cycle inventory-based analysis of greenhouse gas emissions from arable land farming systems in Hokkaido, northern Japan. Soil Sci. Plant Nutr. 2006, 52, 564–574. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-TonThat, T.; Liebig, M.A. Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. J. Environ. Qual. 2012, 41, 1774–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil Parameters | ||||
---|---|---|---|---|
0–5 cm | 5–15 cm | 15–30 cm | 30–45 cm | |
Soil texture | Clay soil | |||
Sand (%) | 22 | |||
Silt (%) | 20 | |||
Clay (%) | 58 | |||
pH | 7.94 | 7.77 | 8.00 | 7.94 |
EC (dSm−1) | 0.14 | 0.14 | 0.15 | 0.14 |
OC (%) | 0.64 | 0.54 | 0.52 | 0.46 |
N (kg ha−1) | 256.8 | 227.9 | ||
P (kg ha−1) | 22.46 | 16.48 | 14.85 | 16.63 |
K (kg ha−1) | 582.28 | 569.46 | 519.06 | 492.92 |
TC (%) | 1.05 | 0.94 | 0.88 | 0.80 |
Tillage System | Cropping System | 0–5 cm | 5–10 cm | 10–15 cm |
---|---|---|---|---|
CT | Soybean + P. Pea | 1.20 a | 1.23 bc | 1.24 bc |
Soybean − Wheat | 1.14 b | 1.22 b | 1.22 e | |
Maize + P. Pea | 1.15 b | 1.18 d | 1.23 de | |
Maize − Chickpea | 1.19 a | 1.22 b | 1.26 b | |
Mean | 1.17 A | 1.21 A | 1.23 B | |
RT | Soybean + P. Pea | 1.12 c | 1.15 d | 1.16 f |
Soybean − Wheat | 1.13 bc | 1.17 d | 1.22 e | |
Maize + P. Pea | 1.13 bc | 1.18 bc | 1.25 bc | |
Maize − Chickpea | 1.17 b | 1.22 b | 1.24 de | |
Mean | 1.13 C | 1.18 C | 1.21 C | |
NT | Soybean + P. Pea | 1.18 a | 1.29 a | 1.30 a |
Soybean − Wheat | 1.13 bc | 1.21 bc | 1.21 de | |
Maize + P. Pea | 1.19 a | 1.23 bc | 1.29 a | |
Maize − Chickpea | 1.17 b | 1.21 bc | 1.25 bc | |
Mean | 1.16 B | 1.23 A | 1.26 A | |
Grand Mean | 1.15 | 1.21 | 1.24 | |
Experimental Test | ||||
Tillage System (T) | *** | |||
Cropping system(CS) | *** | |||
Soil depth(D) | *** | |||
T × CS | *** | |||
T × D | *** | |||
CS × D | *** | |||
T × CS × D | *** | |||
LSD tillage(0.05) LSD Cropping System(0.05) LSD Depth(0.05) | 0.005 0.012 0.009 |
Tillage System | 0–5 cm | 5–15 cm | 15–30 cm | Mean |
---|---|---|---|---|
CT | ||||
Soybean + P. Pea | 0.63 e | 0.53 f | 0.52 c | 0.56 |
Soybean − Wheat | 0.62 e | 0.54 ef | 0.47 de | 0.55 |
Maize + P. Pea | 0.63 e | 0.61 c | 0.52 c | 0.59 |
Maize − Gram | 0.62 e | 0.55 e | 0.46 e | 0.54 |
Mean | 0.62 C | 0.56 C | 0.49 C | 0.56 |
RT | ||||
Soybean + P. Pea | 0.70 c | 0.66 a | 0.56 b | 0.64 |
Soybean − Wheat | 0.67 d | 0.62 ef | 0.55 b | 0.61 |
Maize + P. Pea | 0.71 c | 0.53 f | 0.51 c | 0.58 |
Maize − Gram | 0.71 c | 0.67 a | 0.55 b | 0.64 |
Mean | 0.70 B | 0.62 B | 0.54 B | 0.62 |
NT | ||||
Soybean + P. Pea | 0.74 ab | 0.60 c | 0.55 b | 0.63 |
Soybean − Wheat | 0.73 b | 0.64 b | 0.64 a | 0.67 |
Maize + P. Pea | 0.75 a | 0.57 d | 0.55 b | 0.62 |
Maize − Gram | 0.73 b | 0.64 b | 0.48 d | 0.62 |
Mean | 0.74 A | 0.61 A | 0.56 A | 0.64 |
Tillage System(T) | *** | |||
Cropping system(CS) | * | |||
Soil depth(D) | *** | |||
T × CS | *** | |||
T × D | *** | |||
CS × D | *** | |||
T × CS × D | *** | |||
LSD tillage(0.05) | 0.010 | |||
LSD Cropping System(0.05) | 0.006 | |||
LSD Depth(0.05) | 0.005 |
LM-C | SM-C | Mi-C | Si+C-C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tillage | Cropping System | Depth (cm) | Depth (cm) | Depth (cm) | Depth (cm) | ||||||||
0–5 | 5–15 | 15–30 | 0–5 | 5–15 | 15–30 | 0–5 | 5–15 | 15–30 | 0–5 | 5–15 | 15–30 | ||
CT | Soybean + P. Pea (2:1) | 0.51 ab | 0.51 abcd | 0.46 abc | 0.47 a | 0.39 a | 0.39 ab | 0.42 a | 0.35 a | 0.30 ab | 0.32 ab | 0.22 a | 0.21 a |
Soybean − Wheat | 0.50 ab | 0.41 cd | 0.34 bc | 0.40 a | 0.39 a | 0.41 ab | 0.37 a | 0.36 a | 0.36 ab | 0.29 abc | 0.23 a | 0.23 a | |
Maize + P. Pea (1:1) | 0.44 ab | 0.35 d | 0.53 ab | 0.40 a | 0.43 a | 0.40 ab | 0.38 a | 0.37 a | 0.39 a | 0.33 ab | 0.28 a | 0.31 a | |
Maize − Chickpea | 0.57 a | 0.52 abcd | 0.45 abc | 0.49 a | 0.46 a | 0.40 ab | 0.39 a | 0.36 a | 0.32 ab | 0.34 a | 0.20 a | 0.29 a | |
Mean | 0.51 A | 0.45 A | 0.45 A | 0.44 A | 0.42 A | 0.40 A | 0.39 B | 0.36 A | 0.34 A | 0.32 A | 0.23 A | 0.26 A | |
RT | Soybean + P. Pea (2:1) | 0.50 ab | 0.43 bcd | 0.46 abc | 0.45 a | 0.40 a | 0.43 ab | 0.39 a | 0.35 a | 0.34 ab | 0.21 bc | 0.30 a | 0.28 a |
Soybean − Wheat | 0.52 a | 0.55 abc | 0.33 c | 0.43 a | 0.39 a | 0.43 a | 0.35 a | 0.35 a | 0.36 ab | 0.29 abc | 0.23 a | 0.22 a | |
Maize + P. Pea (1:1) | 0.53 b | 0.53 abc | 0.53 ab | 0.40 a | 0.44 a | 0.45 a | 0.34 a | 0.35 a | 0.32 ab | 0.30 abc | 0.31 a | 0.20 a | |
Maize − Chickpea | 0.55 a | 0.46 bcd | 0.45 abc | 0.49 a | 0.40 a | 0.34 b | 0.39 a | 0.34 a | 0.29 b | 0.38 a | 0.28 a | 0.20 a | |
Mean | 0.53 A | 0.49 A | 0.44 A | 0.44 A | 0.41 A | 0.41 A | 0.37 C | 0.35 A | 0.33 A | 0.30 A | 0.28 A | 0.22 A | |
NT | Soybean + P. Pea (2:1) | 0.61 a | 0.59 ab | 0.50 abc | 0.48 a | 0.43 a | 0.41 ab | 0.43 a | 0.39 a | 0.33 ab | 0.37 a | 0.36 a | 0.28 a |
Soybean − Wheat | 0.58 a | 0.44 a | 0.55 a | 0.44 a | 0.47 a | 0.44 a | 0.42 a | 0.38 a | 0.38 ab | 0.31 abc | 0.23 a | 0.34 a | |
Maize + P. Pea (1:1) | 0.55 a | 0.53 abc | 0.52 abc | 0.45 a | 0.47 a | 0.47 a | 0.38 a | 0.38 a | 0.36 ab | 0.32 abc | 0.24 a | 0.21 a | |
Maize − Chickpea | 0.54 a | 0.49 bcd | 0.53 ab | 0.48 a | 0.40 a | 0.40 ab | 0.41 a | 0.36 a | 0.39 a | 0.20 c | 0.31 a | 0.23 a | |
Mean | 0.57 A | 0.51 A | 0.53 A | 0.46 A | 0.44 A | 0.43 A | 0.41 A | 0.38 A | 0.36 A | 0.30 A | 0.28 A | 0.27 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayaraman, S.; Sahu, M.; Sinha, N.K.; Mohanty, M.; Chaudhary, R.S.; Yadav, B.; Srivastava, L.K.; Hati, K.M.; Patra, A.K.; Dalal, R.C. Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol. Agriculture 2022, 12, 1004. https://doi.org/10.3390/agriculture12071004
Jayaraman S, Sahu M, Sinha NK, Mohanty M, Chaudhary RS, Yadav B, Srivastava LK, Hati KM, Patra AK, Dalal RC. Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol. Agriculture. 2022; 12(7):1004. https://doi.org/10.3390/agriculture12071004
Chicago/Turabian StyleJayaraman, Somasundaram, Meenakshi Sahu, Nishant K. Sinha, Monoranjan Mohanty, Ranjeet S. Chaudhary, Brijesh Yadav, Lalit K. Srivastava, Kuntal M. Hati, Ashok K. Patra, and Ram C. Dalal. 2022. "Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol" Agriculture 12, no. 7: 1004. https://doi.org/10.3390/agriculture12071004
APA StyleJayaraman, S., Sahu, M., Sinha, N. K., Mohanty, M., Chaudhary, R. S., Yadav, B., Srivastava, L. K., Hati, K. M., Patra, A. K., & Dalal, R. C. (2022). Conservation Agricultural Practices Impact on Soil Organic Carbon, Soil Aggregation and Greenhouse Gas Emission in a Vertisol. Agriculture, 12(7), 1004. https://doi.org/10.3390/agriculture12071004