Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries
Abstract
:1. Introduction
2. Materials and Methods
- specialisation, measured by the Herfindahl–Hirschman index using 14 main types of agricultural production; the index value is scaled to the range <0, 1> and the higher the index, the more specialised the agriculture (the share of the dominant types of production is higher);
- orientation towards animal production measured by the share of animal production in total agricultural production;
- production concentration understood as the average value of standard output calculated per one farm;
- land concentration measured as the average utilised agricultural area in hectares per one farm;
- labour concentration measured as the average labour input in AWU per one farm;
- capital concentration measured as the average capital input (intermediate consumption plus fixed assets depreciation) in EUR per one farm.
- capital to labour ratio—measured by the sum of total intermediate consumption and fixed capital consumption calculated by one AWU (annual work unit);
- capital to land ratio—measured by the sum of total intermediate consumption and fixed capital consumption calculated by one hectare of utilised agricultural area;
- INT_RUR—percentage of rural households with access to broadband internet connection;
- UNEMP—unemployment rate for the age group 15–74 in rural areas;
- RENTS—the ratio of rents and other real estate rental charges to be paid to total intermediate consumption;
- CAP—value of subsidies per hectare.
- = 1, …, n are countries;
- = 1, …, n are periods;
- is a vector of independent variables;
- is i.i.d, and .
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Description | Data Source |
---|---|
ECONOMIC OUTPUT | |
Agricultural goods output at basic, constant prices (2010 = 100) | Eurostat: aact_eaa07 |
INPUTS | |
Sum of total intermediate consumption and fixed capital consumption at basic, constant prices (2010 = 100) | Eurostat: aact_eaa07 |
Total labour force input in annual work units | Eurostat: aact_ali01 |
Agricultural land | FAO: 6610 |
ENVIRONMENTAL OUTPUTS | |
Greenhouse gases emission from agriculture (CO2 and N2O, CH4, HFC, PFC, SF6, NF3 in CO2 equivalent) | Eurostat: env_air_gge |
Ammonia emission from agriculture | Eurostat: env_air_emis |
N-Fertilising index: consumption of inorganic fertilisers per ha of arable land and permanent crops | Eurostat: aei_fm_usefert, FAO: 6621, 6630 |
SOCIAL OUTPUT | |
Net value added at basic prices, current prices | Eurostat: aact_eaa01 |
Other subsidises on production | |
Total labour force input in annual work units | Eurostat: aact_ali01 |
Employees | Eurostat: nama_10_pe |
Wages and salaries | Eurostat: nama_10_gdp |
STRUCTURAL FACTORS | |
Number of beneficiaries of all direct payments in financial years 2005–2018 | https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/direct-aid-indicative-figures-20xx_en.pdf (accessed on 26 December 2021) |
Values of different types of agricultural production | Eurostat: aact_eaa01 |
Total labour force input in annual work units | Eurostat: aact_ali01 |
Agricultural land | FAO: 6610 |
OTHER FACTORS | |
Sum of total intermediate consumption and fixed capital consumption at basic, constant prices (2010 = 100) | Eurostat: aact_eaa07 |
Total labour force input in annual work units | Eurostat: aact_ali01 |
Unemployment rate for the age group 15–74 | Eurostat: lfst_r_lfur2ganu |
Households—type of connection to the internet | Eurostat: isoc_ci_it_h |
Rents and other real estate rental charges to be paid | Eurostat: aact_eaa01 |
Agricultural subsidies on product, on production and taxes | Eurostat: aact_eaa04 |
Agricultural land | FAO: 6610 |
VARIABLES | Levels | Indices | ||||||
---|---|---|---|---|---|---|---|---|
N | SI | no_SI | t_test | N | SI | no_SI | t_test | |
Specialisation (0 to 1) | 351 | 0.140 | 0.142 | 0.546 | 351 | 1.002 | 1.005 | 0.371 |
Orientation (0 to 1) | 351 | 0.470 | 0.470 | −0.050 | 351 | 0.988 | 1.007 | 0.606 ** |
Prod. concentration | 347 | 96.9 | 78.7 | −1.829 * | 345 | 1.038 | 1.015 | −2.26 ** |
Land concentration | 345 | 43.7 | 41.7 | −0.489 | 345 | 1.015 | 1.012 | −0.422 |
Labour concentration | 347 | 1.68 | 1.72 | 0.294 | 345 | 0.996 | 0.994 | −0.216 |
Capital concentration | 347 | 83.1 | 66.9 | −1.874 | 345 | 1.024 | 1.016 | −0.874 |
Capital to labour ratio | 351 | 46.7 | 39.0 | −1.881 * | 351 | 1.030 | 1.028 | −0.245 |
Capital to land ratio | 351 | 2.0 | 2.1 | 0.442 | 351 | 1.009 | 1.004 | −0.765 |
INT_RUR (%) | 351 | 61.4 | 57.0 | −1.719 * | 348 | 1.198 | 1.268 | 1.286 |
UNEMP (%) | 351 | 4.69 | 4.66 | −0.089 | 351 | 0.993 | 1.001 | 0.332 |
RENTS (ratio) | 351 | 0.044 | 0.048 | −0.787 | 351 | 1.022 | 1.034 | 0.8508 |
CAP (ratio) | 351 | 286 | 354 | 2.10 ** | 351 | 1.104 | 1.099 | −0.095 |
References
- The Royal Society. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture; The Royal Society: London, UK, 2009. [Google Scholar]
- Foresight. The Future of Food and Farming. Final Project Report; The Government Office for Science: London, UK, 2011. [Google Scholar]
- Buckwell, A.; Uhre, A.N.; Williams, A.; Polakova, J.; Blum, W.; Schiefer, J.; Lair, G.J.; Heissenhuber, A.; Schieβl, P.; Krämer, C. The Sustainable Intensification of European Agriculture; RISE Foundation: Brussels, Belgium, 2014. [Google Scholar]
- FAO. Save and Grow. A Policymaker’s Guide to the Sustainable Intensification of Smallholder Crop Production; FAO: Rome, Italy, 2011. [Google Scholar]
- Kertész, Á.; Madarász, B. Conservation Agriculture in Europe. Int. Soil Water Conserv. Res. 2014, 2, 91–96. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Precision Agriculture: An Opportunity for EU Farmers–Potential Support with the CAP 2014–2020; European Parliament: Brussels, Belgium, 2014. [Google Scholar]
- Rickard, S. Food security and climate change: The role of sustainable intensification, the importance of scale and the CAP. EuroChoices 2015, 14, 48–53. [Google Scholar] [CrossRef]
- Vecchio, Y.; De Rosa, M.; Adinolfi, F.; Bartoli, L.; Masi, M. Adoption of precision farming tools: A context-related analysis. Land Use Policy 2020, 94, 104481. [Google Scholar] [CrossRef]
- Pretty, J.N. The sustainable intensification of agriculture. Nat. Resour. Forum 1997, 21, 247–256. [Google Scholar] [CrossRef]
- Weltin, M.; Zasada, I.; Piorr, A.; Debolini, M.; Geniaux, G.; Moreno, O.; Scherer, L.; Tudela Marco, L.; Schulp, C.J.E. Agriculture, Ecosystems and Environment Conceptualising fields of action for sustainable intensification—A systematic literature review and application to regional case studies. Agric. Ecosyst. Environ. 2018, 257, 68–80. [Google Scholar] [CrossRef]
- European Commission. EUROPA 2020: A European Strategy for Smart, Sustainable and Inclusive Growth; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Potočnik, J. Land Use and Natural Resources in EU Policies; Seventh Forum for the Future of Agriculture-1st April 2014; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Hogan, P. Speech by Commissioner Phil Hogan at the Agricultural Outlook Conference-6th December 2016; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Commission. A Greener and Fairer CAP; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Cardwell, M. The European Model of Agriculture; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of conservation agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Fieldsend, A.F. Agricultural Knowledge and Innovation Systems in European Union policy discourse: Quo vadis? Stud. Agric. Econ. 2020, 122, 115–123. [Google Scholar]
- Mouratiadou, I.; Latka, C.; van der Hilst, F.; Müller, C.; Berges, R.; Bodirsky, B.L.; Ewert, F.; Faye, B.; Heckelei, T.; Hoffmann, M.; et al. Quantifying sustainable intensification of agriculture: The contribution of metrics and modelling. Ecol. Indic. 2021, 129, 107870. [Google Scholar] [CrossRef]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Evaluating the Sustainable Intensification of arable farms. J. Environ. Manag. 2015, 150, 288–298. [Google Scholar] [CrossRef] [Green Version]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Improving productivity and water use efficiency: A case study of farms in England. Agric. Water Manag. 2015, 160, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Hyland, J.J.; Styles, D.; Jones, D.L.; Williams, A.P. Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions. Agric. Syst. 2016, 147, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Taube, F.; Gierus, M.; Hermann, A.; Loges, R.; Schönbach, P. Grassland and globalization challenges for north-west European grass and forage research. Grass Forage Sci. 2014, 69, 2–16. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-efficiency of farms considering multiple functions of agriculture: Concept and results from Austrian farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Chavas, J. Structural change in agricultural production: Economics, technology and policy. Handb. Agric. Econ. 2001, 1, 263–285. [Google Scholar] [CrossRef]
- Deininger, K.; Nizalov, D.; Singh, S. Are Mega-Farms the Future of Global Agriculture? Exploring the Farm Size-Productivity Relationship for Large Commercial Farms in Ukraine; Working Paper Series 49; Kyiv School of Economics and Kyiv Economics Institute: Kyiv, Ukraine, 2013. [Google Scholar]
- Arnaud, S.; Dupraz, P. Farm Structure and Farm Characteristics-Links to Non-Commodity Outputs and Externalities. An Annotated Bibliography of the French Academic Literature; Report to the OECD; INRA: Rennes, France, 2005. [Google Scholar]
- Lipton, M. From policy aims and small-farm characteristics to farm science needs. World Dev. 2010, 38, 1399–1412. [Google Scholar] [CrossRef]
- Vollrath, D. Land distribution and international agricultural productivity. Am. J. Agric. Econ. 2007, 89, 202–216. [Google Scholar] [CrossRef]
- Zegar, J.S. Struktura Polskiego Rolnictwa Rodzinnego; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej–Państwowy Instytut Badawczy: Warsaw, Poland, 2009. [Google Scholar]
- Czyżewski, A.; Smędzik-Ambroży, K. Intensywne Rolnictwo w Procesach Specjalizacji i Dywersyfikacji Produkcji Rolnej: Ujęcie Regionalne i Lokalne; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2013. [Google Scholar]
- Gollin, D.; Parente, S.L.; Rogerson, R. Farm Work, Home Work and International Productivity Differences. Rev. Econ. Dyn. 2004, 7, 827–850. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, G. Is Structural Change Really a Source of Economic Growth? The Case of Agriculture. J. Inst. Theor. Econ. (JITE)/Z. Gesamte Staatswiss. 1990, 146, 470–499. [Google Scholar]
- Goddard, E.; Weersink, A.; Chen, K.; Turvey, C.G. Economics of structural change in agriculture. Can. J. Agric. Econ. 1993, 41, 475–489. [Google Scholar] [CrossRef]
- Pretty, J.N. Regenerating Agriculture: Policies and Practice for Sustainability and Self-Reliance; Joseph Henry Press: Washington, DC, USA, 1995. [Google Scholar]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Cupo, P.; Di Cerbo, R.A. The Determinants of Ranking in Sustainable Efficiency of Italian Farms. Riv. Studi Sulla Sosten. 2016, 2, 141–159. [Google Scholar] [CrossRef]
- Latruffe, L.; Balcombe, K.; Davidova, S.; Zawalinska, K. Determinants of Technical Efficiency of Crop and Livestock Farms in Poland. Appl. Econ. 2004, 36, 1255–1263. [Google Scholar] [CrossRef]
- Bowen, R.; Morris, W. The digital divide: Implications for agribusiness and entrepreneurship. Lessons from Wales. J. Rural Stud. 2019, 72, 75–84. [Google Scholar] [CrossRef]
- Schiff, M.; Valdes, A. Agriculture and the Macroeconomy; Policy Research Working Paper 1976; The World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Bojnec, S.; Latruffe, L. Determinants of Technical Efficiency of Slovenian Farms. Post-Communist Econ. 2009, 21, 117–124. [Google Scholar] [CrossRef]
- Leonhardt, H.; Penker, M.; Salhofer, K. Do Farmers Care about Rented Land? A Multi-Method Study on Land Tenure and Soil Conservation. Land Use Policy 2019, 82, 228–239. [Google Scholar] [CrossRef]
- Minviel, J.J.; Latruffe, L. Effect of public subsidies on farm technical efficiency: A meta-analysis of empirical results. Appl. Econ. 2017, 49, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Piot-Lepetit, I.; Le Moing, M. Productivity and environmental regulation: The effect of the nitrates directive in the French pig sector. Environ. Resour. Econ. 2007, 38, 433–446. [Google Scholar] [CrossRef]
- Adenuga, A.H.; Davis, J.; Hutchinson, G.; Donnellan, T.; Patton, M. Modelling regional environmental efficiency differentials of dairy farms on the island of Ireland. Ecol. Indic. 2018, 95, 851–861. [Google Scholar] [CrossRef]
- Majiwa, E.; Lee, B.L.; Wilson, C. Increasing agricultural productivity while reducing greenhouse gas emissions in Sub-Saharan Africa: Myth or reality? Agric. Econ. 2017, 49, 183–192. [Google Scholar] [CrossRef]
- Falavigna, G.; Manello, A.; Pavone, S. Environmental efficiency, productivity and public funds: The case of the Italian agricultural industry. Agric. Syst. 2013, 121, 73–80. [Google Scholar] [CrossRef]
- Vlontzos, G.; Niavis, S.; Pardalos, P. Testing for Environmental Kuznets Curve in the EU Agricultural Sector through an Eco-(in) Efficiency Index. Energies 2017, 10, 1992. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.H. A metafrontier approach for measuring an environmentally sensitive productivity growth index. Energy Econ. 2010, 32, 146–157. [Google Scholar] [CrossRef]
- O’Donnell, C.J. An aggregate quantity framework for measuring and decomposing productivity change. J. Product. Anal. 2012, 38, 255–272. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980–2000. Agric. Econ. 2005, 32, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Petrick, M.; Kloss, M. Drivers of Agricultural Capital Productivity in Selected EU Member States; Factor Markets Working Papers, No. 30; Centre for European Policy Studies: Brussels, Belgium, 2012. [Google Scholar]
- Omer, A.; Pascual, U.; Russell, N. A theoretical model of agrobiodiversity as a supporting service for sustainable agricultural intensification. Ecol. Econ. 2010, 69, 1926–1933. [Google Scholar] [CrossRef]
- Schaub, S.; Buchmann, N.; Lüscher, A.; Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 2020, 168, 106488. [Google Scholar] [CrossRef]
- Dempsey, N.; Bramley, G.; Power, S.; Brown, C. The social dimension of sustainable development: Defining urban social sustainability. Sustain. Dev. 2011, 19, 289–300. [Google Scholar] [CrossRef]
- White, L.; Lee, G.J. Operational research and sustainable development: Tackling the social dimension. Eur. J. Oper. Res. 2009, 193, 683–692. [Google Scholar] [CrossRef]
- Harris, J.M.; Wise, T.A.; Gallagher, K.; Goodwin, N.R. A Survey of Sustainable Development: Social and Economic Dimensions; The Global Development and Environment Institute, Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Czyżewski, B.; Poczta-Wajda, A. Effects of Policy and Market on Relative Income Deprivation of Agricultural Labour. Village Agric. 2017, 3, 53–70. [Google Scholar] [CrossRef]
- DG Agriculture and Rural Development. Operating Subsidies (Both Direct Payments and Rural Development Except Investment Suport); European Commission: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/cap-operating-subsidies_en.pdf (accessed on 26 December 2021).
- Dakpo, K.H.; Jeanneaux, P.; Latruffe, L. Modelling Pollution-Generating Technologies: A Numerical Comparison of Non-parametric Approaches. In Advances in Efficiency and Productivity II; Springer: Cham, The Netherlands, 2020; pp. 67–85. [Google Scholar]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef]
- Ramalho, E.A.; Ramalho, J.J.; Henriques, P.D. Fractional regression models for second stage DEA efficiency analyses. J. Product. Anal. 2010, 34, 239–255. [Google Scholar] [CrossRef]
- Briner, S.; Huber, R.; Bebi, P.; Elkin, C.; Schmatz, D.R.; Grêt-Regamey, A. Trade-Offs between Ecosystem Services in a Mountain Region. Ecol. Soc 2013, 18, 35. [Google Scholar] [CrossRef] [Green Version]
- Jaklič, T.; Juvančič, L.; Kavčič, S.; Debeljak, M. Complementarity of socio-economic and emergy evaluation of agricultural production systems: The case of Slovenian dairy sector. Ecol. Econ. 2014, 107, 469–481. [Google Scholar] [CrossRef]
- Guyomard, H.; Bouamra-Mechemache, Z.; Chatellier, V.; Delaby, L.; Detang-Dessendre, C.; Peyraud, J.L.; Requillart, V. Why and how to regulate animal production and consumption: The case of the European Union. Animal 2021, 15, 100283. [Google Scholar] [CrossRef]
- Grzelak, A.; Guth, M.; Matuszczak, A.; Czyżewski, B.; Brelik, A. Approaching the environmental sustainable value in agriculture: How factor endowments foster the eco-efficiency. J. Clean. Prod. 2019, 241, 118304. [Google Scholar] [CrossRef]
- Zhu, X.; Hu, R.; Zhang, C.; Shi, G. Does Internet use improve technical efficiency? Evidence from apple production in China. Technol. Forecast. Soc. Chang. 2021, 166, 120662. [Google Scholar] [CrossRef]
- Staniszewski, J. Attempting to measure sustainable intensification of agriculture in countries of the European Union. J. Environ. Prot. Ecol. 2018, 19, 949–957. [Google Scholar]
- Czyżewski, B.; Matuszczak, A.; Grzelak, A.; Guth, M.; Majchrzak, A. Environmental sustainable value in agriculture revisited: How does Common Agricultural Policy contribute to eco-efficiency? Sustain. Sci. 2021, 16, 137–152. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Blum, W.E.H. Indicators for the definition of land quality as a basis for the sustainable intensification of agricultural production. Int. Soil Water Conserv. Res. 2015, 3, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Scherer, L.A.; Verburg, P.H.; Schulp, C.J.E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Chang. 2018, 48, 43–55. [Google Scholar] [CrossRef]
- Firbank, L.G.; Elliott, J.; Drake, B.; Cao, Y.; Gooday, R. Evidence of sustainable intensification among British farms. Agric. Ecosyst. Environ. 2013, 173, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Balaine, L.; Dillon, E.J.; Läpple, D.; Lynch, J. Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms. Land Use Policy 2020, 92, 104437. [Google Scholar] [PubMed]
- Čechura, L.; Žáková Kroupová, Z.; Kostlivý, V.; Lekešová, M. Productivity and Efficiency of Precision Farming: The Case of Czech Cereal Production. AGRIS On-Line Pap. Econ. Inform. 2021, 13, 15–24. [Google Scholar] [CrossRef]
- Finn, J.A.; Kirwan, L.; Connolly, J.; Sebastia, M.T.; Helgadottir, A.; Baadshaug, O.H.; Bélanger, G.; Black, A.; Brophy, C.; Collins, R.P.; et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013, 50, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Wuepper, D.; Wimmer, S.; Sauer, J. Does family farming reduce rural unemployment? Eur. Rev. Agric. Econ. 2021, 48, 315–337. [Google Scholar] [CrossRef]
- Silva, J.V.; Reidsma, P.; Baudron, F.; Laborte, A.G.; Giller, K.E.; van Ittersum, M.K. How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe. Glob. Food Secur. 2021, 30, 100552. [Google Scholar]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Ortiz, A.M.D.; Outhwaite, C.L.; Dalin, C.; Newbold, T. Review of the interactions between biodiversity, agriculture, climate change, and international trade: Research and policy priorities. One Earth 2021, 4, 88–101. [Google Scholar] [CrossRef]
Variable | Indices | Levels | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | AVG | SD | Min | Max | N | AVG | SD | Min | Max | |
Specialisation (0 to 1) | 351 | 1.00 | 0.07 | 0.78 | 1.29 | 378 | 0.14 | 0.03 | 0.10 | 0.23 |
Orientation (0 to 1) | 351 | 1.00 | 0.07 | 0.76 | 1.32 | 378 | 0.47 | 0.11 | 0.22 | 0.77 |
Prod. concentration (in EUR thous.) | 345 | 1.02 | 0.10 | 0.70 | 1.51 | 372 | 85.96 | 90.74 | 7.74 | 510.24 |
Land concentration (in hectares) | 345 | 1.01 | 0.07 | 0.70 | 1.47 | 372 | 42.70 | 37.94 | 1.69 | 227.93 |
Labour concentration (in AWU) | 345 | 0.99 | 0.08 | 0.65 | 1.45 | 372 | 1.72 | 1.12 | 0.50 | 8.01 |
Capital concentration (in EUR thous.) | 345 | 1.02 | 0.09 | 0.50 | 1.51 | 372 | 73.44 | 78.26 | 6.38 | 438.52 |
Capital to labour ratio (in EUR thous.) | 351 | 1.03 | 0.08 | 0.40 | 1.61 | 378 | 41.73 | 37.31 | 4.11 | 160.65 |
Capital to land ratio (in EUR thous.) | 351 | 1.01 | 0.05 | 0.58 | 1.21 | 378 | 2.06 | 2.14 | 0.41 | 10.96 |
INT_RUR (%) | 348 | 1.24 | 0.51 | 0.74 | 6.00 | 378 | 55.66 | 25.68 | 0.00 | 98.00 |
UNEMP_RUR (%) | 351 | 1.00 | 0.22 | 0.63 | 2.51 | 378 | 8.53 | 4.72 | 2.10 | 28.70 |
RENTS (%) | 351 | 1.03 | 0.14 | 0.46 | 2.01 | 378 | 4.64 | 3.25 | 0.38 | 24.60 |
CAP (in EUR per hectare) | 351 | 1.10 | 0.52 | 0.21 | 7.51 | 378 | 318 | 296 | 14 | 2446 |
VARIABLE | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
Specialisation | −1.821 | −1.972 | −1.794 | −1.836 | −1.740 | −1.934 | |
(1.894) | (1.912) | (1.902) | (1.897) | (1.903) | (1.931) | ||
Orientation | 9.498 *** | 9.605 *** | 9.304 *** | 9.517 *** | 9.465 *** | 9.362 *** | |
(2.219) | (2.241) | (2.221) | (2.221) | (2.221) | (2.242) | ||
Prod. concentration | 10.170 *** | 10.609 *** | 10.200 *** | 10.121 *** | 10.223 *** | 10.649 *** | |
(2.476) | (2.540) | (2.488) | (2.487) | (2.484) | (2.566) | ||
Land concentration | −3.908 | −10.786 | −3.611 | −3.828 | −3.772 | −10.206 | |
(3.399) | (27.351) | (3.444) | (3.421) | (3.414) | (28.180) | ||
Labour concentration | −4.871 ** | −17.843 * | −4.943 ** | −4.881 ** | −5.015 ** | −18.979 * | |
(2.294) | (10.126) | (2.300) | (2.292) | (2.318) | (10.354) | ||
Capital concentration | −0.981 | 18.030 | −1.202 | −1.012 | −1.014 | 18.466 | |
(2.864) | (30.834) | (2.889) | (2.866) | (2.871) | (31.903) | ||
Capital/labour ratio | 0.245 | −11.531 | −12.349 | ||||
(1.750) | (8.814) | (8.991) | |||||
Capital/land ratio | 0.799 | −8.129 | −8.203 | ||||
(2.802) | (26.869) | (27.651) | |||||
INT_RUR | −0.301 | −0.117 | −0.197 | ||||
(0.264) | (0.293) | (0.303) | |||||
UNEMP_RUR | −0.058 | −0.188 | −0.206 | ||||
(0.530) | (0.550) | (0.557) | |||||
RENTS | −0.457 | −0.172 | −0.125 | ||||
(0.866) | (0.900) | (0.919) | |||||
CAP | 0.039 | 0.111 | 0.098 | ||||
(0.227) | (0.237) | (0.243) | |||||
Constant | −8.615 *** | −0.555 | 11.503 | −8.161 ** | −8.430 ** | −8.801 *** | 13.140 |
(3.166) | (2.741) | (30.131) | (3.300) | (3.307) | (3.200) | (31.267) | |
Observations | 345 | 348 | 345 | 344 | 345 | 345 | 344 |
Number of groups | 27 | 27 | 27 | 27 | 27 | 27 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniszewski, J.; Kryszak, Ł. Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries. Agriculture 2022, 12, 334. https://doi.org/10.3390/agriculture12030334
Staniszewski J, Kryszak Ł. Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries. Agriculture. 2022; 12(3):334. https://doi.org/10.3390/agriculture12030334
Chicago/Turabian StyleStaniszewski, Jakub, and Łukasz Kryszak. 2022. "Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries" Agriculture 12, no. 3: 334. https://doi.org/10.3390/agriculture12030334
APA StyleStaniszewski, J., & Kryszak, Ł. (2022). Do Structures Matter in the Process of Sustainable Intensification? A Case Study of Agriculture in the European Union Countries. Agriculture, 12(3), 334. https://doi.org/10.3390/agriculture12030334