Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Field Experimental Design and Management Practices
2.2. Silage Preparation and Sampling
2.3. Chemical Analyses
2.4. Multicriteria Assessment
2.5. Data Analysis
3. Results
3.1. Subsection
Forage Fresh Matter Yield and Alfalfa to Corn Ratio
3.2. Forage Dry Matter Yield and Crude Protein Yield
3.3. Characteristics of Silage Chemical and Fermentation Characteristics
3.4. Multicriteria Assessment on Overall Performances
4. Discussion
4.1. Effects of Intercropping on System Productivity and Silage Quality
4.2. Multicriteria Assessment on Productivity and Quality Performance of Alfalfa–Silage Corn Intercropping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of Cover Crops in Improving Soil and Row Crop Productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Grabber, J.H.; Jokela, W.E.; Lauer, J.G. Soil Nitrogen and Forage Yields of Corn Grown with Clover or Grass Companion Crops and Manure. Agron. J. 2014, 106, 952–961. [Google Scholar] [CrossRef] [Green Version]
- West, J.R.; Ruark, M.D.; Shelley, K.B. Sustainable intensification of corn silage cropping systems with winter rye. Agron. Sustain. Dev. 2020, 40, 11. [Google Scholar] [CrossRef]
- Chen, S.; Wyse, D.L.; Johnson, G.A.; Porter, P.M.; Stetina, S.R.; Miller, D.R.; Betts, K.J.; Klossner, L.D.; Haar, M.J. Effect of cover crops alfalfa, red clover, and perennial ryegrass on soybean cyst nematode population and soybean and corn yields in Minnesota. Crop Sci. 2006, 46, 1890–1897. [Google Scholar] [CrossRef]
- Coombs, C.; Lauzon, J.D.; Deen, B.; Van Eerd, L.L. Legume cover crop management on nitrogen dynamics and yield in grain corn systems. Field Crops Res. 2017, 201, 75–85. [Google Scholar] [CrossRef]
- Kang, J.M.; Yang, Q.C.; Guo, W.S.; Zhang, T.J.; Sun, Y. Yield evaluation of ten introduced alfalfa cultivars in Beijing area of china. Chin. J. Grassl. 2010, 32, 5–10. [Google Scholar]
- Li, Y.; Zhao, H.M.; You, Y.L.; Wu, R.X.; Liu, G.B. Evaluation on production performance and economic benefit of the single alfalfa field interplanting different forage crops in summer. Acta Pratacult. Sinica 2019, 28, 73–87. [Google Scholar]
- Lv, H.G.; Kang, J.M.; Long, R.C.; Yang, Q.C.; Sun, Y.; Jun, Z.T. Yield evaluation of 22 alfalfa cultivars in Hebei area. Acta Agrestia Sin. 2018, 26, 948–958. [Google Scholar]
- Brito, A.F.; Broderick, G.A. Effect of Varying Dietary Ratios of Alfalfa Silage to Corn Silage on Production and Nitrogen Utilization in Lactating Dairy Cows1. J. Dairy Sci. 2006, 89, 3924–3938. [Google Scholar] [CrossRef]
- Grabber, J.H. Prohexadione-calcium improves stand density and yield of alfalfainterseeded into silage corn. Agron. J. 2016, 108, 726–735. [Google Scholar] [CrossRef]
- Weiss, W.P.; St-Pierre, N.R.; Willett, L.B. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. J. Dairy Sci. 2009, 92, 5595–5606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Sun, Q.; Li, F.; Xu, C.; Cai, Y. Comparative analysis of ensiling characteristics and protein degradation of alfalfa silage prepared with corn or sweet sorghum in semiarid region of Inner Mongolia. Anim. Sci. J. 2020, 91, e13321. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, X.; Yu, Z.; Na, R. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl. Scie. 2017, 63, 211–217. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, H.; Liu, G.; You, Y.; Ma, L.; Liu, N.; Zhang, Y. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Res. 2021, 263, 108068. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, H.; Liu, G.; Li, Y.; Li, S.; Zhang, Y.; Liu, N.; Ma, L. Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain. Agr. Syst. 2022, 195, 103305. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L.; Yu, Z. Fermentation dynamics and bacterial diversity of mixed lucerne and sweet corn stalk silage ensiled at six ratios. Grass Forage Sci. 2019, 74, 264–273. [Google Scholar] [CrossRef]
- Baghdadi, A.; Halim, R.A.; Radziah, O.; Martini, M.Y.; Ebrahimi, M. Fermentation characteristics and nutritive value of corn silage intercropped with soybean under different crop combination ratios. J. Anim. Plant Sci. 2016, 26, 1710–1717. [Google Scholar]
- Dewhurst, R.J. Milk production from silage: Comparison of grass, legume and maize silages and their mixtures. Agr. Food Sci. 2013, 22, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, A.G.; Dear, B.S.; Morris, S.G. An evaluation of the yield and quality of oatlegume and ryegrasslegume mixtures and legume monocultures harvested at three stages of growth for silage. Aust. J. Exp. Agr. 2007, 47, 25–38. [Google Scholar] [CrossRef]
- Flynn, E.S.; Moore, K.J.; Singer, J.W.; Lamkey, K.R. Evaluation of Grass and Legume Species as Perennial Ground Covers in Corn Production. Crop Sci. 2013, 53, 611–620. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Dong, S. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Varella, A.C.; Moot, D.J.; Pollock, K.M.; Peri, P.L.; Lucas, R.J. Do light and alfalfa responses to cloth and slatted shade represent those measured under an agroforestry system? Agrofor. Syst. 2011, 81, 157–173. [Google Scholar] [CrossRef]
- Wu, Y.S.; Gong, W.Z.; Yang, F.; Wang, X.C.; Yong, T.W.; Yang, W.Y. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant. Prod. Sci. 2016, 19, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Hui, Y.; Yu, C.D.; Zhang, Q.; Zhou, Y.Q.; Li, Y.; Liu, X.H.; Zhu, L.L.; Hui, D.F.; Wan, S.Q. Carbon balance under four double-season cropping systems in North China Plain. Plant Soil 2017, 421, 319–336. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists (AOAC): Arlington, TX, USA, 1990; pp. 1–1298. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sc. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation; University of Minnesota Extension Service: St. Paul, MN, USA, 1989; (MN AG-FO-02637). [Google Scholar]
- Murphy, R.P. A method for the extraction of plant samples and the determination of total soluble carbohydrates. J. Sci. Food Agr. 1958, 9, 714–717. [Google Scholar] [CrossRef]
- Pelzer, E.; Bazot, M.; Makowski, D.; Corre-Hellou, G.; Naudin, C.; Al Rifai, M.; Baranger, E.; Bedoussac, L.; Biarnes, V.; Boucheny, P.; et al. Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 2012, 40, 39–53. [Google Scholar] [CrossRef]
- Pelzer, E.; Bazot, M.; Guichard, L.; Jeuffroy, M.-H. Crop Management Affects the Performance of a Winter Pea–Wheat Intercrop. Agron. J. 2016, 108, 1089–1100. [Google Scholar] [CrossRef]
- Piepho, H.P.; Williams, E.R.; Fleck, M. A note on the analysis of designed experiments with complex treatment structure. Hortscience 2006, 41, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Gao, Y.; Yang, H.; Zhang, W.; Li, Z. Performance of alfalfa rather than maize stimulates system phosphorus uptake and overyielding of maize/alfalfa intercropping via changes in soil water balance and root morphology and distribution in a light chernozemic soil. Plant Soil 2019, 439, 145–161. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Z.; Wu, Z.; Hannaway, D.B. Effect of Lactobacillus plantarum ‘KR107070’ and a propionic acid-based preservative on the fermentation characteristics, nutritive value and aerobic stability of alfalfa-corn mixed silage ensiled with four ratios. Grassl. Sci. 2018, 64, 51–60. [Google Scholar] [CrossRef]
- Li, L.; Li, S.-M.; Sun, J.-H.; Zhou, L.-L.; Bao, X.-G.; Zhang, H.-G.; Zhang, F.-S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. USA 2007, 104, 11192–11196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasar, J.; Shao, Z.; Arshad, A.; Jones, F.G.; Liu, S.; Li, C.; Khan, M.Z.; Khan, T.; Banda, J.S.K.; Zhou, X.; et al. The effect of maize–alfalfa intercropping on the physiological characteristics, nitrogen uptake and yield of maize. Plant Biol. 2020, 22, 1140–1149. [Google Scholar] [CrossRef]
- Filya, I. Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Anim. Feed Sci. Technol. 2004, 116, 141–150. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; p. 340. [Google Scholar]
- Downing, T.W.; Buyserie, A.; Gamroth, M.; French, P. Effect of Water Soluble Carbohydrates on Fermentation Characteristics of Ensiled Perennial Ryegrass. Pro. Anim. Scient. 2008, 24, 35–39. [Google Scholar] [CrossRef]
- Jahanzad, E.; Sadeghpour, A.; Hosseini, M.B.; Barker, A.V.; Hashemi, M.; Zandvakili, O.R. Silage Yield and Nutritive Value of Millet-Soybean Intercrops as Influenced by Nitrogen Application. Agron. J. 2014, 106, 1993–2000. [Google Scholar] [CrossRef]
- Smeltekop, H.; Clay, D.E.; Clay, S.A. The impact of intercropping annual ‘Sava’ snail medic on corn production. Agron. J. 2002, 94, 917–924. [Google Scholar] [CrossRef]
- Feng, P.; Wen, D.Y.; Sun, Q.Z. Effect of plant density on yield and quality of silage corn. Pratacult. Sci. 2011, 28, 2203–2208. [Google Scholar]
- Sun, Z.Q.; Wang, T.Z.; Tian, J.P.; Liu, G.B.; You, Y.L.; Zhao, H.M.; Yu, Z. The effects of the ensiling density and nitrogen application rate on the quality of whole plant corn silage. China Dairy Cattle 2019, 7, 13–16. [Google Scholar]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- Skonieski, F.R.; Viégas, J.; Martin, T.N.; Nörnberg, J.L.; Meinerz, G.R.; Tonin, T.J.; Bernhard, P.; Frata, M.T. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality. Rev. Bras. Zootec. 2017, 46, 722–730. [Google Scholar] [CrossRef] [Green Version]
NR | PD | Alfalfa FM Yield, t ha−1 | Corn FM Yield, t ha−1 | Alfalfa Proportion in Silage, % | |||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
N0 a | D30 b | 5.26 Aa | 5.05 a | 29.66 Bb | 20.42 Bb | 18 Aa | 25 Aa |
D45 | 2.75 B | 3.40 | 33.59 ABb | 24.52 AB | 8 B | 14 B | |
D60 | 1.54 B | 3.17 | 37.84 A | 27.83 Ab | 5 C | 11 B | |
N60 | D30 | 3.23 c | 2.67 b | 34.70 Bab | 26.61 ab | 9 b | 10 b |
D45 | 3.24 | 2.06 | 38.30 ABab | 31.61 | 8 | 8 | |
D60 | 2.48 | 1.81 | 40.80 A | 32.81 ab | 6 | 6 | |
N120 | D30 | 3.41 Ac | 3.82 ab | 34.78 ab | 25.39 ab | 10 Ab | 15 b |
D45 | 3.18 A | 2.56 | 39.84 ab | 32.30 | 8 AB | 8 | |
D60 | 2.73 B | 2.08 | 39.11 | 33.37 ab | 7 B | 7 | |
N180 | D30 | 4.38 Ab | 3.90 Aab | 36.36 Ba | 27.30 Ba | 12 b | 14 Ab |
D45 | 2.28 B | 2.43 AB | 45.37 Aa | 31.95 A | 5 | 8 AB | |
D60 | 1.19 B | 1.17 B | 47.26 A | 36.07 Aa | 3 | 3 B | |
Mean | 3.00 | 2.84 | 38.57 | 30.21 | 9 | 11 | |
SEM c | 0.19 | 0.21 | 0.91 | 0.97 | 0.01 | 0.01 | |
Source of variation p value | |||||||
NR | ns d | ns | 0.022 | 0.013 | 0.020 | 0.010 | |
PD | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
NR × PD | <0.001 | ns | ns | ns | <0.001 | ns |
Treatment | Alfalfa DM Yield (t ha−1) | Corn DM Yield (t ha−1) | Alfalfa CP Content (g kg−1 DM) | Corn CP Content (g kg−1 DM) | Alfalfa CP Yield (kg ha−1) | Corn CP Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Cropping system | ||||||||||||
CK | 17.86 | 19.30 | 62.50 | 60.19 | 1114.70 | 1161.83 | ||||||
AC | 13.35 | 12.09 | 73.77 | 62.47 | 986.08 | 756.23 | ||||||
N application rate | ||||||||||||
CK | 17.86 a | 19.30 a | 62.50 c | 60.19 ab | 1114.70 a | 1161.83 a | ||||||
N0 a | 0.93 a | 1.27 | 11.75 d | 9.63 c | 175.35 ab | 167.24 | 66.18 bc | 59.02 b | 162.96 a | 212.93 | 778.32 b | 567.31 c |
N60 | 0.82 a | 0.72 | 12.95 cd | 12.51 b | 165.38 b | 169.57 | 74.44 ab | 60.31 ab | 135.29 ab | 122.60 | 963.14 ab | 749.01 b |
N120 | 0.89 a | 0.96 | 14.07 bc | 12.66 b | 181.77 a | 169.05 | 76.59 ab | 64.66 ab | 162.23 a | 162.67 | 1072.96 a | 818.77 b |
N180 | 0.65 b | 0.85 | 14.63 b | 13.56 b | 177.92 a | 174.55 | 77.84 a | 65.88 a | 116.47 b | 146.94 | 1129.90 a | 889.84 b |
Corn plant density | ||||||||||||
CK | 17.86 a | 19.30 a | 62.50 b | 60.19 | 1114.70 a | 1161.83 a | ||||||
D30 b | 1.07 a | 1.24 a | 11.74 c | 10.15 c | 178.28 | 173.35 | 77.60 a | 64.46 | 191.79 a | 214.38 a | 913.87 b | 655.99 c |
D45 | 0.78 b | 0.87 b | 13.46 bc | 12.59 bc | 173.75 | 168.51 | 72.29 ab | 61.31 | 135.16 b | 146.61 b | 979.34 ab | 776.99 bc |
D60 | 0.61 b | 0.73 b | 14.86 b | 13.52 b | 173.28 | 168.44 | 71.41 ab | 61.64 | 105.77 b | 122.90 b | 1065.03 ab | 835.71 b |
Overall Mean | 0.82 | 0.95 | 13.69 | 12.64 | 175.10 | 170.10 | 72.90 | 62.30 | 144.24 | 161.29 | 995.98 | 787.43 |
SEM c | 0.05 | 0.06 | 0.35 | 0.47 | 1.97 | 1.70 | 1.26 | 0.73 | 8.6 | 11.07 | 27.31 | 30.23 |
Source of variation p value | ||||||||||||
AC vs. CK | <0.001 | <0.001 | 0.004 | ns | 0.032 | <0.001 | ||||||
NR | <0.001 | ns d | 0.001 | 0.001 | 0.003 | ns | 0.001 | <0.001 | <0.001 | ns | <0.001 | 0.001 |
PD | <0.001 | 0.001 | <0.001 | <0.001 | ns | ns | 0.037 | 0.030 | <0.001 | <0.001 | 0.003 | <0.001 |
NR × PD | <0.001 | ns | ns | ns | 0.008 | ns | ns | ns | <0.001 | ns | ns | ns |
Treatment | DM (g kg−1) | CP (g kg−1 DM) | NDF (g kg−1 DM) | ADF (g kg−1 DM) | RFV | WSC (g kg−1 DM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Cropping system | ||||||||||||
CK | 387.31 | 483.70 | 71.20 | 62.83 | 447.16 | 444.67 | 275.13 | 258.85 | 180.45 | 247.29 | 19.54 | 10.85 |
AC | 343.62 | 430.20 | 83.32 | 72.51 | 447.97 | 463.14 | 275.82 | 276.28 | 189.77 | 228.31 | 36.07 | 16.48 |
N application rate | ||||||||||||
CK | 387.31 a | 483.70 a | 71.20 b | 62.83 b | 447.16 ab | 444.67 b | 275.13 ab | 258.85 b | 180.45 | 247.29 a | 19.54 c | 10.85 c |
N0 a | 343.07 bc | 405.39 c | 83.02 a | 70.49 ab | 468.89 a | 481.01 a | 288.19 a | 290.83 a | 184.03 | 211.86 b | 28.73 bc | 12.59 bc |
N60 | 332.42 c | 425.67 bc | 81.87 a | 68.24 ab | 444.63 ab | 445.01 b | 265.98 b | 262.45 b | 195.68 | 246.81 a | 33.77 ab | 15.82 abc |
N120 | 364.25 ab | 436.54 bc | 84.43 a | 74.85 a | 432.63 b | 461.84 ab | 283.75 ab | 280.48 ab | 185.01 | 227.37 ab | 38.76 ab | 18.33 ab |
N180 | 334.74 c | 453.18 ab | 83.95 a | 76.43 a | 445.72 ab | 464.68 ab | 265.36 ab | 271.37 ab | 194.35 | 227.17 ab | 43.00 a | 19.16 a |
Corn plant density | ||||||||||||
CK | 387.31 a | 483.70 a | 71.20 c | 62.83 c | 447.16 | 444.67 | 275.13 | 258.85 | 180.45 | 247.29 | 19.54 b | 10.85 b |
D30 b | 340.15 b | 409.96 b | 87.86 a | 81.33 a | 457.52 | 467.97 | 271.66 | 278.18 | 192.21 | 222.85 | 40.04 a | 17.99 a |
D45 | 343.43 b | 435.99 b | 82.47 ab | 69.80 b | 440.58 | 465.95 | 274.96 | 278.42 | 192.42 | 224.43 | 34.39 a | 16.08 ab |
D60 | 347.29 b | 444.31 ab | 79.62 b | 66.39 bc | 445.81 | 455.49 | 280.85 | 272.24 | 184.67 | 237.64 | 33.76 a | 15.35 ab |
Overall Mean | 346.98 | 434.31 | 82.38 | 71.76 | 447.91 | 461.72 | 275.77 | 274.94 | 189.05 | 229.76 | 34.80 | 16.04 |
SEM c | 3.49 | 5.17 | 0.95 | 1.28 | 3.94 | 3.53 | 3.26 | 2.63 | 2.65 | 3.38 | 1.51 | 0.72 |
Source of variation p value | ||||||||||||
AC vs. CK | <0.001 | <0.001 | <0.001 | <0.001 | ns | ns | ns | 0.049 | ns | ns | <0.001 | 0.009 |
NR | <0.001 | <0.001 | ns | <0.001 | 0.011 | 0.004 | 0.002 | 0.001 | ns | 0.03 | <0.001 | 0.001 |
PD | ns d | <0.001 | <0.001 | <0.001 | ns | ns | ns | ns | ns | ns | 0.019 | ns |
NR × PD | <0.001 | <0.001 | 0.001 | 0.028 | ns | ns | ns | ns | ns | ns | 0.041 | ns |
Treatment | pH | NH3-N (g kg−1 TN) | LA (g kg−1 DM) | AA (g kg−1 DM) | PA (g kg−1 DM) | BA (g kg−1 DM) | V-Score | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
Cropping system | ||||||||||||||
CK | 3.82 | 3.61 | 49.02 | 45.83 | 66.96 | 29.49 | 10.26 | 5.99 | 1.91 | ND e | ND | 0.08 | 100.00 | 99.34 |
AC | 3.79 | 3.65 | 54.08 | 51.52 | 72.66 | 40.92 | 9.64 | 9.62 | 1.11 | 0.20 | ND | 0.03 | 99.19 | 99.00 |
N application rate | ||||||||||||||
CK | 3.82 | 3.61 b | 49.02 b | 45.83 b | 66.96 | 29.49 b | 10.26 | 5.99 b | 1.91 a | ND | ND | 0.08 | 100.00 a | 99.34 ab |
N0 a | 3.80 | 3.67 a | 45.59 b | 47.06 b | 72.61 | 43.79 a | 8.48 | 9.36 a | 1.47 ab | 0.14 | ND | 0.09 | 99.79 a | 99.12 ab |
N60 | 3.79 | 3.62 b | 52.22 ab | 46.35 b | 71.59 | 39.07 ab | 9.89 | 9.47 a | 1.07 b | 0.43 | ND | ND | 99.99 a | 99.99 a |
N120 | 3.79 | 3.64 ab | 56.47 ab | 49.97 b | 67.69 | 41.28 a | 10.54 | 9.40 a | 0.92 b | ND | ND | ND | 99.52 a | 99.52 ab |
N180 | 3.79 | 3.67 a | 62.04 a | 62.69 a | 78.73 | 39.53 a | 9.67 | 10.37 a | 0.99 b | 0.23 | ND | 0.01 | 97.47 b | 97.39 b |
Corn plant density | ||||||||||||||
CK | 3.82 a | 3.61 b | 49.02 | 45.83 | 66.96 bc | 29.49 b | 10.26 | 5.99 b | 1.91 a | ND | ND | 0.08 | 100.00 | 99.34 |
D30 b | 3.77 b | 3.66 a | 55.39 | 52.57 | 83.53 a | 40.13 a | 10.16 | 9.49 a | 1.73 a | 0.19 | ND | 0.07 | 99.15 | 98.64 |
D45 | 3.80 ab | 3.64 ab | 53.44 | 50.89 | 75.50 ab | 41.91 a | 9.79 | 9.54 a | 1.04 b | 0.31 | ND | 0.01 | 99.17 | 99.11 |
D60 | 3.81 a | 3.65 ab | 53.40 | 51.08 | 58.93 c | 40.72 a | 8.98 | 9.83 a | 0.56 b | 0.11 | ND | ND | 99.26 | 99.26 |
Overall Mean | 3.79 | 3.65 | 53.69 | 51.08 | 72.22 | 40.04 | 9.70 | 9.34 | 1.17 | 0.19 | ND | 0.03 | 99.25 | 99.03 |
SEM c | 0.01 | 0.01 | 1.41 | 1.37 | 2.17 | 1.06 | 0.33 | 0.42 | 0.11 | 0.09 | ND | 0.02 | 0.21 | 0.26 |
Source of variation p value | ||||||||||||||
AC vs. CK | ns d | 0.005 | ns | ns | ns | 0.004 | ns | 0.001 | <0.001 | ns | ns | ns | ||
NR | ns | <0.001 | 0.001 | <0.001 | 0.035 | ns | ns | ns | 0.001 | ns | <0.001 | 0.003 | ||
PD | <0.001 | ns | ns | ns | <0.001 | ns | ns | ns | <0.001 | ns | ns | ns | ||
NR × PD | 0.005 | 0.009 | ns | ns | 0.048 | ns | ns | ns | <0.001 | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Zhao, H.; You, Y.; Wu, R.; Liu, G.; Sun, Z.; Bademuqiqige; Zhang, Y. Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand. Agriculture 2022, 12, 357. https://doi.org/10.3390/agriculture12030357
Xu R, Zhao H, You Y, Wu R, Liu G, Sun Z, Bademuqiqige, Zhang Y. Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand. Agriculture. 2022; 12(3):357. https://doi.org/10.3390/agriculture12030357
Chicago/Turabian StyleXu, Ruixuan, Haiming Zhao, Yongliang You, Ruixin Wu, Guibo Liu, Zhiqiang Sun, Bademuqiqige, and Yingjun Zhang. 2022. "Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand" Agriculture 12, no. 3: 357. https://doi.org/10.3390/agriculture12030357
APA StyleXu, R., Zhao, H., You, Y., Wu, R., Liu, G., Sun, Z., Bademuqiqige, & Zhang, Y. (2022). Effects of Intercropping, Nitrogen Fertilization and Corn Plant Density on Yield, Crude Protein Accumulation and Ensiling Characteristics of Silage Corn Interseeded into Alfalfa Stand. Agriculture, 12(3), 357. https://doi.org/10.3390/agriculture12030357