Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Forage Collection and Preparation
2.3. Soil Analysis
2.4. Nutritive Parameters
2.5. Chemical Analysis
2.6. Data Analysis
3. Results
3.1. Climatic and Soil Analysis
3.2. Forage Production
3.3. Comparison of Nutritive Parameters
3.4. Altitudinal Variation of Nutritive Parameters
3.5. Seasonal Influence on Nutritive Parameters
3.6. Effect of Environmental Variables on Nutritive Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howden, S.M.; Crimp, S.J.; Stokes, C.J. Climate change and Australian livestock systems: Impacts, research and policy issues. Aust. J. Exp. Agr. 2008, 48, 780–788. [Google Scholar] [CrossRef]
- Cullen, B.R.; Johnson, I.R.; Eckard, R.J.; Lodge, G.M.; Walker, R.G.; Rawnsley, R.P.; McCaskill, M.R. Climate change effects on pasture systems in south-eastern Australia. Crop Pasture Sci. 2009, 60, 933–942. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; George, M.R. Effects of Climate Change on Range Forage Production in the San Francisco Bay Area. PLoS ONE 2013, 8, e57723. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.; Andueza, D.; Niderkorn, V.; Lüscher, A.; Porqueddu, C.; Picon-Cochard, C. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254. [Google Scholar] [CrossRef]
- Borges, P.A.V.; Gabriel, R.; Fattorini, S. Biodiversity Erosion: Causes and Consequences. In Life on Land; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Delaby, L.; Finn, J.A.; Grange, G.; Horan, B. Pasture-Based Dairy Systems in Temperate Lowlands: Challenges and Opportunities for the Future. Front. Sustain. Food Syst. 2020, 4, 543587. [Google Scholar] [CrossRef]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Fuglie, K.; Peters, M.; Burkart, S. The Extent and Economic Significance of Cultivated Forage Crops in Developing Countries. Front. Sustain. Food Syst. 2021, 5, 712136. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Challenges and Opportunities for Carbon Sequestration in Grassland Systems: A Technical Report on Grassland Management and Climate Mitigation; FAO: Rome, Italy, 2010. [Google Scholar]
- Chaudhry, A.S. Forage based animal production systems and sustainability, an invited keynote. Rev. Bras. Zootecn. 2008, 37, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Lüscher, A.; Markus, D.; Blum, H.; Hartwig, U.A.; Nösberger, J. Fertile temperate grassland under elevated atmospheric CO2—role of feed-back mechanisms and availability of growth resources. Eur. J. Agron. 2004, 21, 379–398. [Google Scholar] [CrossRef]
- Perring, M.P.; Cullen, B.R.; Johnson, I.R.; Hovenden, M.J. Modelled effects of rising CO2 concentration and climate change on native perennial grass and sown grass-legume pastures. Clim. Res. 2010, 42, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Thivierge, M.N.; Jégo, G.; Bélanger, G.; Bertrand, A.; Tremblay, G.F.; Rotz, C.A.; Qian, B. Predicted yield and nutritive value of an alfalfa–timothy mixture under climate change and elevated atmospheric carbon dioxide. Agron. J. 2016, 108, 585–603. [Google Scholar] [CrossRef] [Green Version]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Wu, M.; Liu, W.; Zhang, Z.; Zhang, N.; Wan, S. Community structure and composition in response to climate change in a temperate steppe. Glob. Chang. Biol. 2017, 17, 452–465. [Google Scholar] [CrossRef]
- Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Chen, Z.; Karowe, D.N.; Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Change Biol. Bioenergy 2004, 10, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- INE—Instituto Nacional de Estatística. Estatísticas da Produção e Consumo de Leite; INE: Lisboa, Portugal, 2015; 76p. [Google Scholar]
- Melo, C.D.; Walker, C.; Rodríguez-Echeverría, S.; Borges, P.A.V.; Freitas, H. Species composition of arbuscular mycorrhizal fungi differ in semi-natural and intensively managed pastures in an isolated oceanic island (Terceira, Azores). Symbiosis 2014, 64, 73–85. [Google Scholar] [CrossRef]
- Borba, J.P.R.; Maduro Dias, C.S.A.M.; Rosa, H.J.D.; Vouzela, C.F.M.; Rego, O.A.; Borba, A.E.S. Nutritional valorization of ginger lily forage (Hedychium gardnerianum, Sheppard ex Ker-Gawl) for animal feeding: Treatment with urea. Afr. J. Agric. Res. 2015, 10, 4606–4615. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Eckard, R.J.; Harrison, M.T.; Neal, J.S.; Cullen, B.R. Effect of warming on the productivity of perennial ryegrass and kikuyu pastures in south-eastern Australia. F Pasture Sci. 2013, 64, 61–70. [Google Scholar] [CrossRef]
- Borba, A.E.S. Produção Animal Tradicional da Ilha de S. Jorge. Agroforum 2007, 19, 29–34. [Google Scholar]
- Santos, F.D.; Valente, M.A.; Miranda, P.M.A.; Aguiar, A.; Azevedo, E.B.; Tomé, A.R.; Coelho, F. Climate change scenarios in the Azores and Madeira Islands. World Resour. Rev. 2004, 16, 473–491. [Google Scholar]
- PRAC—Programa Regional Para as Alterações Climáticas dos Açores; Cavalheiro, G. (Ed.) Caos: Queluz, Portugal, 2017; 181p. [Google Scholar]
- Lee, J.M.; Clark, A.J.; Roche, J.R. Climate-change effects and adaptation options pasture-based dairy farming systems: A review. Grass Forage Sci. 2013, 68, 485–503. [Google Scholar] [CrossRef]
- Hughes, M.P.; Jennings, P.G.A.; Mlambo, V.; Lallo, C.H.O. Exploring seasonal variations in sward characteristics and nutritive value of tropical pastures grazed by beef and dairy cattle on commercial farms in Jamaica. J. Anim. Sci. 2011, 1, 47–60. [Google Scholar]
- Hughes, M.P.; Jennings, P.G.A.; Mlambo, V.; Lallo, C.H.O. Effect of season and harvesting method on chemical composition, predicted metabolizable energy and in vitro organic matter digestibility of rotationally grazed tropical pastures. Online J. Anim. Feed Res. 2011, 2, 405–417. [Google Scholar]
- García Couto, M.A. Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores; Agencia Estatal de Meteorología de España, Madrid and Instituto de Meteorologia de Portugal: Lisboa, Portugal, 2012; pp. 15–62. [Google Scholar]
- Monteiro, R.; Furtado, S.; Rocha, M.; Freitas, M.; Medeiros, R.; Cruz, J.V. O Ordenamento do Território nos Açores: Política e Instrumentos; Secretaria Regional do Ambiente e do Mar, Direção Regional do Ordenamento do Território e dos Recursos Hídricos: Ponta Delgada, Portugal, 2008; 159p. [Google Scholar]
- Elias, R.B.; Gil, A.; Silva, L.; Fernández-Palacios, J.M.; Azevedo, E.B.; Reis, F. Natural zonal vegetation of the Azores Islands: Characterization and potential distribution. Phytocoenologia 2016, 46, 107–123. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Virginia, VA, USA, 1995. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses. Agricultural Handbook n° 379; Agricultural Research Service United States Department of Agriculture: Washington, DC, USA, 1970; pp. 1–19. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Alexander, R.H.; McGowan, M. The routine determination of in vitro digestibility of organic matter in forages: An investigation of the problems associated with continuous large-scale operation. Grass Forage Sci. 1966, 21, 140–147. [Google Scholar] [CrossRef]
- IBM Corporation. Released. IBM SPSS Statistics for Windows, Version 27.0; IBM Corp.: Armonk, NY, USA, 2020. [Google Scholar]
- ter Braak, C.J.F.; Smilauer, P. CANOCO Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Azevedo, E.B. Modelação do clima insular à escala local. Modelo CIELO aplicado à ilha Terceira. Ph.D. Thesis, University of the Azores, Angra do Heroísmo, Portugal, 1996. [Google Scholar]
- Chapman, D.F.; Lee, J.M.; Waghorn, G.C. Interaction between plant physiology and pasture feeding value: A review. Crop Pasture Sci. 2014, 65, 721–734. [Google Scholar] [CrossRef]
- Hakl, J.; Fuksa, P.; Konečná, J.; Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 2016, 71, 413–423. [Google Scholar] [CrossRef]
- Schjoerring, J.K.; Cakmak, I.; White, P.J. Plant nutrition and soil fertility: Synergies for acquiring global green growth and sustainable development. Plant Soil 2019, 434, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Koidou, M.; Mountousis, I.; Dotas, V.; Zagorakis, K.; Yiakoulaki, M. Temporal variations of herbage production and nutritive value of three grasslands at different elevation zones regarding grazing needs and welfare of ruminants. Arch. Anim. Breed. 2019, 62, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, A.; Howden, S.M.; del Prado, A.; Thomas, D.T.; Moore, A.D.; Ji, B.; Ates, S. Climate change impact, adaptation, and mitigation in temperate grazing systems: A review. Sustainability 2019, 11, 7224. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; George, T.S.; Dupuy, L.X.; Karley, A.J.; Valentine, T.A.; Wiesel, L.; Wishart, J. Root traits for infertile soils. Front. Plant Sci. 2013, 4, 193. [Google Scholar] [CrossRef] [Green Version]
- Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Abebe, A.; Tolerabc, A.; Holanda, Ø.; Ådnøya, T.; Eikad, L.O. Seasonal variation in nutritive value of some browse and grass species in Borana Rangeland, Southern Ethiopia. Trop. Subtrop. Agroecosystems 2012, 15, 261–271. [Google Scholar]
- Guenni, O.; Seiter, S.; Figueroa, R. Growth response of three Brachiaria species to light intensity and nitrogen supply. Trop. Grassl. 2008, 42, 75–87. [Google Scholar]
- Mishra, A.K.; Tiwari, H.S.; Bhatt, R.K. Growth, biomass production and photosynthesis of Cenchrus ciliaris L. Under Acacia tortilis (Forssk.) Hayne based silvopastoral systems in semi arid tropics. J. Environ. Biol. 2010, 31, 987–993. [Google Scholar] [PubMed]
- Mtui, D.J.; Lekule, F.P.; Shem, M.N.; Ichinohe, T.; Fujihara, T. Comparative potential nutritive value of grasses, creeping legumes and multipurpose trees commonly in sub humid region in the eastern parts of Tanzania. Livest. Res. Rural Dev. 2009, 21, 158. Available online: https://www.lrrd.org/lrrd21/10/mtui21158.htm (accessed on 30 December 2021).
- Lopez-Gonzalez, F.; Estrada-Flores, J.G.; Aviles-Nova, F.; Yong-Angel, G.; Hernandez-Morales, P.; Martinez-Loperena, R.; Castelon-Ortega, A.O. Agronomic evaluation and chemical composition of African Star grass in the Southern region of the state of Mexico. Trop. Subtrop. Agroecosystems 2010, 12, 1–9. [Google Scholar]
- Roukos, C.; Papanikolaou, K.; Karalazos, A.; Chatzipanagiotou, A.; Mountousis, I.; Mygdalia, A. Changes in nutritional quality of herbage botanical components on a mountain side grassland in North-West Greece. Anim. Feed Sci. Technol. 2011, 169, 24–34. [Google Scholar] [CrossRef]
- Mountousis, I.; Papanikolaou, K.; Stanogias, G.; Chatzitheodoridis, F.; Roukos, C. Seasonal variation of chemical composition and dry matter digestibility of rangelands in NW Greece. J. Cent. Eur. Agric. 2008, 9, 547–556. [Google Scholar]
- Moreira, F.B.; Prado, I.N.; Cecato, U.; Wada, F.Y.; Mizubuti, I.Y. Forage evaluation, chemical composition, and in vitro digestibility of continuously grazed star grass. Anim. Feed Sci. Technol. 2004, 113, 239–249. [Google Scholar] [CrossRef]
Parameters a | Pasture A | Pasture B | Pasture C |
---|---|---|---|
Altitude (m) | 186 | 301 | 386 |
Annual rainfall (mm) | 1366 | 2036 | 2162 |
Average monthly rainfall (mm) | 113.83 ± 15.42 | 169.67 ± 25.22 | 180.17 ± 24.37 |
Average monthly temperature (°C) | 15.96 ± 0.83 | 15.31 ± 0.82 | 14.32 ± 0.88 |
Average monthly minimum temperature (°C) | 13.29 ± 0.77 | 12.61 ± 0.76 | 11.64 ± 0.81 |
Average monthly maximum temperature (°C) | 18.58 ± 0.90 | 17.96 ± 0.88 | 16.98 ± 0.95 |
Average relative air humidity (%) | 92.00 ± 0.41 | 92.67 ± 0.51 | 96.83 ± 0.11 |
pH | 6.74 ± 0.09 a | 6.33 ± 0.07 b | 5.87 ± 0.06 c |
P (mg kg−1) | 105.50 ± 5.25 a | 87.80 ± 8.67 b | 27.20 ± 4.53 c |
K (mg kg−1) | 311.20 ± 46.49 a | 164.90 ± 17.26 a | 66.30 ± 15.62 b |
Ca (mg kg−1) | 1661.10 ± 67.58 a | 1307.20 ± 57.08 b | 406.40 ± 48.48 c |
Mg (mg kg−1) | 333.40 ± 25.82 a | 150.00 ± 12.10 b | 113.50 ± 32 ± 13.78 b |
OM (%) | 6.07 ± 0.32 a | 8.08 ± 0.45 b | 11.01 ± 0.45 c |
Parameters | Equation | T | DF | p | r2 |
---|---|---|---|---|---|
DM | DMD = 0.69 − 0.44x | −3.37 | 106 | ** | 0.10 |
CP | DMD = 0.40 + 1.20x | 7.02 | 106 | *** | 0.32 |
NDF | DMD = 1.07 − 0.65x | −7.50 | 106 | *** | 0.35 |
ADF | DMD = 1.07 − 0.65x | −12.08 | 106 | *** | 0.58 |
ADL | DMD = 1.18 − 1.80x | −6.96 | 106 | *** | 0.31 |
EE | DMD = 0.43 + 0.40x | 4.18 | 106 | *** | 0.14 |
Ash | DMD = 0.33 + 2.59x | 6.22 | 106 | *** | 0.28 |
DM | OMD = 0.57 − 0.08x | −0.06 | 106 | n.s. | 0.003 |
CP | OMD = 0.45 + 0.59x | 2.98 | 106 | ** | 0.08 |
NDF | OMD = 0.94 − 0.56x | −6.06 | 106 | *** | 0.26 |
ADF | OMD = 1.05 − 1.58x | −9.37 | 106 | *** | 0.45 |
ADL | OMD = 0.66 − 3.31x | −4.97 | 106 | *** | 0.19 |
EE | OMD = 0.46 + 3.72x | 2.00 | 106 | * | 0.04 |
Ash | OMD = 0.43 + 1.13x | 2.34 | 106 | * | 0.04 |
Pasture A | Pasture B | Pasture C | ||||
---|---|---|---|---|---|---|
Source | F | p | F | p | F | p |
DM | 156.80 | *** | 55.83 | *** | 175.76 | *** |
CP | 40.10 | *** | 79.80 | *** | 73.77 | *** |
NDF | 6.49 | ** | 17.10 | *** | 29.01 | *** |
ADF | 74.50 | *** | 30.37 | *** | 111.34 | *** |
ADL | 8.62 | ** | 34.08 | *** | 9.02 | *** |
EE | 10.79 | *** | 21.44 | *** | 10.91 | *** |
Ash | 122.86 | *** | 147.14 | *** | 21.16 | *** |
DMD | 17.86 | *** | 9.14 | *** | 27.49 | *** |
DMO | 12.98 | *** | 4.23 | * | 29.75 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, C.D.; Maduro Dias, C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures. Agriculture 2022, 12, 358. https://doi.org/10.3390/agriculture12030358
Melo CD, Maduro Dias CSAM, Wallon S, Borba AES, Madruga J, Borges PAV, Ferreira MT, Elias RB. Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures. Agriculture. 2022; 12(3):358. https://doi.org/10.3390/agriculture12030358
Chicago/Turabian StyleMelo, Catarina D., Cristiana S. A. M. Maduro Dias, Sophie Wallon, Alfredo E. S. Borba, João Madruga, Paulo A. V. Borges, Maria T. Ferreira, and Rui B. Elias. 2022. "Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures" Agriculture 12, no. 3: 358. https://doi.org/10.3390/agriculture12030358
APA StyleMelo, C. D., Maduro Dias, C. S. A. M., Wallon, S., Borba, A. E. S., Madruga, J., Borges, P. A. V., Ferreira, M. T., & Elias, R. B. (2022). Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures. Agriculture, 12(3), 358. https://doi.org/10.3390/agriculture12030358