Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data
2.2.1. Soil Samples
2.2.2. Soil Moisture Measurements
2.2.3. Satellite Data
2.2.4. Leaf Area Index (LAI) Measurement
2.3. Data Analysis
2.3.1. Land Use Classification
2.3.2. The Water Cloud Model (WCM)
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Leaf Area Index (LAI)
3.2. WCM-Based Soil Moisture Estimation
3.3. Soil Moisture and SWC Practice
3.4. Soil Moisture and Topographic Positions
3.5. Soil Moisture and Soil Depth
3.6. Soil Moisture and Land Use
3.7. Validation of Soil Moisture Estimations
3.8. Implications of Conserved Soil Moisture for Future Food Security
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekele-Tesemma. Status and dynamics of natural resources in Ethiopia. In NOVIB Partners Forum for Sustainable Land Use; Population, Environment and Rural Development Issues for Sustainable Livelihood in Ethiopia: Addis Ababa, Ethiopia, 2001; pp. 165–184. [Google Scholar]
- Nyssen, J.; Veyret-Picot, M.; Poesen, J.; Moeyersons, J.; Haile, M.; Deckers, J.; Govers, G. The effectiveness of loose rock check dams for gully control in Tigray, northern Ethiopia. Soil Use Manag. 2006, 20, 55–64. [Google Scholar] [CrossRef]
- Olsson, L.; Barbosa, H.; Bhadwal, S.; Cowie, A.; Delusca, K.; Flores-Renteria, D. Land Degradation: IPCC Special Report on Climate Change, Desertification, Land 5 Degradation, Sustainable Land Management, Food Security, and 6 Greenhouse gas fluxes in Terrestrial Ecosystems. In IPCC Special Report on Climate Change, Desertification, Land 5 Degradation, Sustainable Land Management, Food Security, and 6 Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019; p. 1. [Google Scholar]
- Constable, M. Ethiopian Highland Reclamation Study. Working Paper 24; Ministry of Agriculture: Addis Ababa, Ethiopia, 1985. [Google Scholar]
- Yirdaw, E. Deforestation and Forest Plantations in Ethiopia. M. In Sustainable Forestry Challenges for Developing Countries; Palo, M., Mery, G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; pp. 327–342. [Google Scholar]
- UNEP. What Do We Know About Desertification Control. Ecol. Environ. 1983, 3, 29. [Google Scholar]
- Hurni, H. Land degradation, famine, and land resource scenarios in Ethiopia. In World Soil Erosion and Conservation; Pimentel, D., Ed.; Cambridge University Press: Cambridge, UK, 1993; pp. 27–62. Available online: https://tinyurl.com/y5jheypo (accessed on 23 November 2021).
- Bekele, M. Forestry Outlook Studies in Africa (FOSA) Ethiopia. 2001. Available online: https://www.fao.org/3/ab582e/ab582e.pdf (accessed on 1 December 2021).
- Bojo, J.P.; Cassells, D. Land Degradation and Rehabilitation in Ethiopia: A Reassessment; World Bank Group: Washington, DC, USA, 1995; Volume 1, pp. 1–56. Available online: https://tinyurl.com/y6p9f855 (accessed on 5 December 2021).
- Taddese, G. Land degradation: A challenge to Ethiopia. Environ. Manag. 2001, 27, 815–824. [Google Scholar] [CrossRef] [PubMed]
- FAO. Ethiopian Highlands Reclamation Study; FAO: Rome, Italy, 1986. [Google Scholar]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Tibebu, T.Y.; Getaneh, M.; Abate, S.; Zemale, F.A.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 2015, 63, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Sauerborn, P. Soil and water conservation in ethiopia. J. Soils Sediments 2001, 1, 117–123. [Google Scholar] [CrossRef]
- Bishaw, B. Deforestation and land degradation in the Ethiopian highlands: A strategy for physical recovery. Northeast. Afr. Stud. 2001, 8, 7–25. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Nyssen, J.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Schütt, B.; Adgo, E.; Tegegne, F. Soil erosion and conservation in Ethiopia. Prog. Phys. Geogr. Earth Environ. 2015, 39, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Dagnachew, M.; Moges, A.; Kebede, A.; Abebe, A. Effects of Soil and Water Conservation Measures on Soil Quality Indicators: The Case of Geshy Subcatchment, Gojeb River Catchment, Ethiopia. Appl. Environ. Soil Sci. 2020, 2020, 1868792. [Google Scholar] [CrossRef] [Green Version]
- Taye, G.; Poesen, J.; Van Wesemael, B.; Vanmaercke, M.; Teka, D.; Deckers, J.; Goosse, T.; Maetens, W.; Nyssen, J.; Hallet, V.; et al. Effects of land use, slope gradient, and soil and water conservation structures on runoff and soil loss in semi-arid Northern Ethiopia. Phys. Geogr. 2013, 34, 236–259. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Clymans, W.; Poesen, J.; Vandecasteele, I.; De Baets, S.; Haregeweyn, N.; Naudts, J.; Hadera, A.; Moeyersons, J.; Haile, M.; et al. How soil conservation affects the catchment sediment budget—A comprehensive study in the north Ethiopian highlands. Earth Surf. Process. Landf. 2009, 34, 1216–1233. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Gebremichael, D.; Vancampenhout, K.; D’Aes, M.; Yihdego, G.; Govers, G.; Leirs, H.; Moeyersons, J.; Naudts, J.; et al. Interdisciplinary on-site evaluation of stone bunds to control soil erosion on cropland in Northern Ethiopia. Soil Tillage Res. 2007, 94, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Haregeweyn, N.; Poesen, J.; Nyssen, J.; Govers, G.; Verstraeten, G.; de Vente, J.; Deckers, J.; Moeyersons, J.; Haile, M. Sediment yield variability in Northern Ethiopia: A quantitative analysis of its controlling factors. CATENA 2008, 75, 65–76. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Poesen, J.; Nyssen, J.; De Wit, J.; Haile, M.; Govers, G.; Deckers, S. Reservoirs in Tigray (Northern Ethiopia): Characteristics and sediment deposition problems. Land Degrad. Dev. 2006, 17, 211–230. [Google Scholar] [CrossRef]
- Teka, K.; Haftu, M.; Ostwald, M.; Cederberg, C. Can integrated watershed management reduce soil erosion and improve livelihoods? A study from northern Ethiopia. Int. Soil Water Conserv. Res. 2020, 8, 266–276. [Google Scholar] [CrossRef]
- Hurni, H. Degradation and Conservation of the Resources in the Ethiopian Highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- Sonneveld, B.; Keyzer, M.; Stroosnijder, L. Evaluating quantitative and qualitative models: An application for nationwide water erosion assessment in Ethiopia. Environ. Model. Softw. 2011, 26, 1161–1170. [Google Scholar] [CrossRef]
- Li, X.; Shao, M.A.; Jia, X.; Wei, X.; He, L. Depth persistence of the spatial pattern of soil–water storage along a small transect in the Loess Plateau of China. J. Hydrol. 2015, 529, 685–695. [Google Scholar] [CrossRef]
- Li, D.; Shao, M.A. Temporal stability of soil water storage in three landscapes in the middle reaches of the Heihe River, northwestern China. Environ. Earth Sci. 2015, 73, 3095–3107. [Google Scholar] [CrossRef]
- Li, S.; Dong, S.; Shen, H.; Han, Y.; Zhang, J.; Xu, Y.; Gao, X.; Yang, M.; Li, Y.; Zhao, Z.; et al. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Sci. Total Environ. 2019, 688, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.R.; Huang, M.; Qian, Y.; Liang, X. Climate–soil–vegetation control on groundwater table dynamics and its feedbacks in a climate model. Clim. Dyn. 2011, 36, 57–81. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.; Clulow, A. Present status of soil moisture estimation over the African continent. J. Hydrol. Reg. Stud. 2019, 21, 14–24. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil Moisture for Hydrological Applications: Open Questions and New Opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Plecher, H. Ethiopia: Share of Economic Sectors in the Gross Domestic Product (GDP) from 2009 to 2019. Available online: https://www.plecher.com/statistics/455149/share-of-economic-sectors-in-the-gdp-in-ethiopia/ (accessed on 10 December 2021).
- Seleshi, Y.; Camberlin, P. Recent changes in dry spell and extreme rainfall events in Ethiopia. Theor. Appl. Climatol. 2006, 83, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Kebede, A.; Diekkrüger, B.; Edossa, D.C. Dry spell, onset, and cessation of the wet season rainfall in the Upper Baro-Akobo Basin, Ethiopia. Theor. Appl. Climatol. 2017, 129, 849–858. [Google Scholar] [CrossRef]
- Araya, T.; Cornelis, W.M.; Nyssen, J.; Govaerts, B.; Bauer, H.; Gebreegziabher, T.; Oicha, T.; Raes, D.; Sayre, K.D.; Haile, M.; et al. Effects of conservation agriculture on runoff, soil loss and crop yield under rainfed conditions in Tigray, Northern Ethiopia. Soil Use Manag. 2011, 27, 404–414. [Google Scholar] [CrossRef]
- Tilahun, K. Analysis of rainfall climate and evapo-transpiration in arid and semi-arid regions of Ethiopia using data over the last half a century. J. Arid Environ. 2006, 64, 474–487. [Google Scholar] [CrossRef]
- Zeleke, K.; Raes, D. Test of Homogeneity, frequency analysis of rainfall data and estimate of drought probabilities in Dire Dawa, Eastern Ethiopia. Ethiop. J. Nat. Resour. 1999, 1, 125. [Google Scholar]
- Wainwright, C.M.; Black, E.; Allan, R.P. Future Changes in Wet and Dry Season Characteristics in CMIP5 and CMIP6 simulations. J. Hydrometeorol. 2021, 22, 2339–2357. [Google Scholar] [CrossRef]
- Reynolds, S. The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Ma, Y.; Qu, L.; Wang, W.; Yang, X.; Lei, T. Measuring soil water content through volume/mass replacement using a constant volume container. Geoderma 2016, 271, 42–49. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmugge, J.; Engman, E.T. Remote sensing applications to hydrology: Soil moisture. Hydrol. Sci. J. 1996, 41, 517–530. [Google Scholar] [CrossRef]
- Garrison, J.L.; Nold, B.; Lin, Y.C.; Pignotti, G.; Piepmeier, J.R.; Vega, M.; Fritts, M.; DuToit, C.; Knuble, J. Recent results on soil moisture remote sensing using P-band signals of opportunity. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 11–15 September 2017; pp. 1604–1607. [Google Scholar]
- Xu, C.; Qu, J.J.; Hao, X.; Wu, D. Monitoring Surface Soil Moisture Content over the Vegetated Area by Integrating Optical and SAR Satellite Observations in the Permafrost Region of Tibetan Plateau. Remote Sens. 2020, 12, 183. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, S. Using SAR-Derived Vegetation Descriptors in a Water Cloud Model to Improve Soil Moisture Retrieval. Remote Sens. 2018, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Yigrem, Y.; Melesse, A.M. Combined Use of Sentinel-1 SAR and Landsat Sensors Products for Residual Soil Moisture Retrieval over Agricultural Fields in the Upper Blue Nile Basin, Ethiopia. Sensors 2020, 20, 3282. [Google Scholar] [CrossRef]
- Huang, S.; Ding, J.; Zou, J.; Liu, B.; Zhang, J.; Chen, W. Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage. Sensors 2020, 19, 589. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Hari Prasad, K.S.; Arora, M.K. Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrol. Sci. J. 2012, 57, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Hong, W.; Li, Y.; Lin, Y. Soil moisture change detection model for slightly rough surface based on interferometric phase. J. Appl. Remote Sens. 2015, 9, 095981. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Tao, L.; Li, J.; Jiang, J.; Chen, X. Leaf Area Index Inversion of Winter Wheat Using Modified Water-Cloud Model. IEEE Geosci. Remote Sens. Lett. 2016, 13, 816–820. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- Small, E.E.; Larson, K.M.; Chew, C.C.; Dong, J.; Ochsner, T.E. Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects. IEEE J. select. Top. App. Earth Observ. Remote Sensing. 2016, 9, 4759–4770. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R. (Ed.) Deep-sea mining: Current status and future considerations. In Deep-Sea Mining Resource Potential, Technical and Environmental Considerations; Springer Nature: Basel, Switzerland, 2018; pp. 3–21. [Google Scholar]
- Khalilian, A.; Jones, M.A.; Bauer, P.J.; Marshall, M.W. Comparison of Five Tillage Systems in Coastal Plain Soils for Cotton Production. Open J. Soil Sci. 2017, 7, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 1980, 2, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process 2002, 11, 1260–1270. [Google Scholar]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [Green Version]
- Bousbih, S.; Zribi, M.; Chabaane, Z.L.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2018, 17, 2617. [Google Scholar] [CrossRef] [Green Version]
- Sisheber, B.; Marshall, M.; Mengistu, D.; Nelson, A. Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102670. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M. A practical scheme for correcting multiple scattering effects on optical LAI measurements. Agric. For. Meteorol. 2001, 110, 125–139. [Google Scholar] [CrossRef]
- Li, T.; Heuvelink, E.; Dueck, T.A.; Janse, J.; Gort, G.; Marcelis, L.F.M. Enhancement of crop photosynthesis by diffuse light: Quantifying the contributing factors. Ann. Bot. 2014, 114, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Alshari, E.A.; Gawali, B.W. Development of classification system for LULC using remote sensing and GIS. Glob. Transit. Proc. 2021, 2, 8–17. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L. Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. Adv. Remote Sens. 2013, 2, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Vital, J.A. Land Use/Cover Change Using Remote Sensing and Geographic Information Systems: Pic Macaya National Park, Haiti. Master’s Thesis, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, USA, 2008. [Google Scholar]
- Jenness, J.; Wynne, J.J. Kappa Analysis (kappa_stats.avx) Extension for ArcView 3.x. Jenness Enterprises. 2007. Available online: http://www.jennessent.com/arcview/kappa_stats.htm (accessed on 25 December 2021).
- Graham, A.J.; Harris, R. Extracting biophysical parameters from remotely sensed radar data: A review of the water cloud model. Prog. Phys. Geogr. 2003, 27, 217–229. [Google Scholar] [CrossRef]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2016, 20, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.J.; Subhashree, V.; Jayasudha, T.; Hemagowri, V.; Gowrishankar, K.; Kumar, R.A.; Koshy, T. Class II Analphoid Chromosome in a Child with Aberrant Chromosome 7: A Rare Cytogenetic Association. Cytogenet. Genome Res. 2015, 146, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Prévot, L.; Dechambre, M.; Taconet, O.; Vidal-Madjar, D.; Normand, M.; Gallej, S. Estimating the characteristics of vegetation canopies with airborne radar measurements. Int. J. Remote Sens. 1993, 14, 2803–2818. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Mexis, F.-D.K.; Vozinaki, A.-E.K.; Daliakopoulos, I.N.; Tsanis, I.K. Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach. Sensors 2017, 17, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, M.; Mahallati, M.N.; Amiri, M.B. The effect of humic acid and water super absorbent polymer application on sesame in an ecological cropping system: A new employment of structural equation modeling in agriculture. Chem. Biol. Technol. Agric. 2019, 6, 1. [Google Scholar] [CrossRef]
- He, J.; Zhang, N.; Su, X.; Lu, J.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Estimating Leaf Area Index with a New Vegetation Index Considering the Influence of Rice Panicles. Remote Sens. 2019, 11, 1809. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, S.; Wang, Y.; Hu, Y.; Chen, F. Assessment of Leaf Area Index of Rice for a Growing Cycle Using Multi-Temporal C-Band PolSAR Datasets. Remote Sens. 2019, 11, 2640. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, C.L.; Richardson, A.J. Leaf Area, Light Interception, and Yield Estimates from Spectral Components Analysis. Agron. J. 1984, 76, 543–548. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 2016, 62, 250–255. [Google Scholar] [CrossRef]
- Terefe, H.; Argaw, M.; Tamene, L.; Mekonnen, K.; Recha, J.; Solomon, D. Effects of sustainable land management interventions on selected soil properties in Geda watershed, central highlands of Ethiopia. Ecol. Process. 2020, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Melaku, N.D.; Renschler, C.S.; Flagler, J.; Bayu, W.; Klik, A. Integrated impact assessment of soil and water conservation structures on runoff and sediment yield through measurements and modeling in the Northern Ethiopian highlands. Catena 2018, 169, 140–150. [Google Scholar] [CrossRef]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Effects of soil and water conservation practices on soil physicochemical properties in Gumara watershed, Upper Blue Nile Basin, Ethiopia. Ecol. Process. 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Hishe, S.; Lyimo, J.; Bewket, W. Soil and water conservation effects on soil properties in the Middle Silluh Valley, northern Ethiopia. Int. Soil Water Conserv. Res. 2017, 5, 231–240. [Google Scholar] [CrossRef]
- Erkossa, T.; Williams, T.O.; Laekemariam, F. Integrated soil, water and agronomic management effects on crop productivity and selected soil properties in Western Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 305–316. [Google Scholar] [CrossRef]
- Wolka, K. Effect of Soil and Water Conservation Measures and Challenges for its Adoption: Ethiopia in Focus. J. Environ. Sci. Technol. 2014, 7, 185–199. [Google Scholar] [CrossRef]
- Gadana, D.B.; Sharma, P.D.; Selfeko, D.T. Effect of Soil Management Practices and Slope on Soil Fertility of Cultivated Lands in Mawula Watershed, Loma District, Southern Ethiopia. Adv. Agric. 2020, 2020, 8866230. [Google Scholar] [CrossRef]
- Fiedler, A. Supporting Inclusive Rural Transformation in Ethiopia; GIZ. 2017. Available online: https://www.giz.de/en/downloads/2018-09-12_SLM_Rural_Transformation_Ethiopia.pdf (accessed on 1 October 2021).
- Gwak, Y.; Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 2017, 31, 431–445. [Google Scholar] [CrossRef]
- Mekonnen, M.; Getahun, M. Soil conservation practices contribution in trapping sediment and soil organic carbon, Minizr watershed, northwest highlands of Ethiopia. J. Soils Sediments 2020, 20, 2484–2494. [Google Scholar] [CrossRef]
- Das Neves, H.H.; Da Mata, M.G.F.; Guerra, J.G.M.; De Carvalho, D.F.; Wendroth, O.O.; Ceddia, M.B. Spatial and temporal patterns of soil water content in an agroecological production system. Sci. Agricola 2017, 74, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Mhiret, D.A.; Dagnew, D.C.; Alemie, T.C.; Guzman, C.D.; Tilahun, S.A.; Zaitchik, B.F.; Steenhuis, T.S. Impact of Soil Conservation and Eucalyptus on Hydrology and Soil Loss in the Ethiopian Highlands. Water 2019, 11, 2299. [Google Scholar] [CrossRef] [Green Version]
- Alemayhu, A.; Yakob, G. Soil physicochemical properties under eucalyptus tree species planted in alley maize cropping agroforestry practice in Decha Woreda, Kaffa zone, southwest Ethiopia. Int. J. Agric. Res. Innov. Technol. 2021, 10, 7–14. [Google Scholar] [CrossRef]
- Negasa, D.J. Effects of Land Use Types on Selected Soil Properties in Central Highlands of Ethiopia. Appl. Environ. Soil Sci. 2020, 2020, 7026929. [Google Scholar] [CrossRef]
- Liang, J.; Reynolds, T.; Wassie, A.; Collins, C.; Wubalem, A. Effects of exotic Eucalyptus spp. plantations on soil properties in and around sacred natural sites in the northern Ethiopian Highlands. AIMS Agric. Food 2016, 1, 175–193. [Google Scholar] [CrossRef]
- Sekaleli, T.S.T. The Impact of Eucalyptus Plantation on Soil Moisture and Ground Vegetation Cover at St. Michaels in the Roma valley, Lesotho. 2016. Available online: https://www.iwra.org/member/congress/resource/ABSID245_Abstracteucs_and_water.pdf (accessed on 23 October 2021).
- Tanto, T.; Laekemariam, F. Impacts of soil and water conservation practices on soil property and wheat productivity in Southern Ethiopia. Environ. Syst. Res. 2019, 8, 13. [Google Scholar] [CrossRef]
- Adimassu, Z.; Langan, S.; Barron, J. Highlights of Soil and Water Conservation Investments in Four Regions of Ethiopia; IWMI: Colombo, Sri Lanka, 2018. [Google Scholar]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.; Diaz-Pines, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, S.A.; Tafere, S.M. Local people’s knowledge on the adverse impacts and their attitudes towards growing Eucalyptus woodlot in Gudo Beret Kebele, Basona Worena district, Ethiopia. Ecol. Process. 2017, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Zribi, M.; Muddu, S.; Bousbih, S.; Al Bitar, A.; Tomer, S.K.; Baghdadi, N.; Bandyopadhyay, S. Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics. Remote Sens. 2019, 11, 1122. [Google Scholar] [CrossRef] [Green Version]
- Reis, M.S.; Escada, M.I.S.; Dutra, L.V.; Sant’Anna, S.J.S.; Vogt, N.D. Towards a Reproducible LULC Hierarchical Class Legend for Use in the Southwest of Pará State, Brazil: A Comparison with Remote Sensing Data-Driven Hierarchies. Land 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- GSP. Global Soil Partnership Endorses Guidelines on Sustainable Soil Management. 2017. Available online: http://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/ (accessed on 23 October 2021).
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Mo, X.-G.; Hu, S.; Lin, Z.-H.; Liu, S.-X.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Chang. Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Ross, J.A. Improved Reproductive Health Equity Between the Poor and the Rich: An Analysis of Trends in 46 Low- and Middle-Income Countries. Glob. Health Sci. Pr. 2015, 3, 419–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekuria, W. The link between agricultural production and population dynamics in Ethiopia: A review. Adv. Plants Agric. Res. 2018, 8, 348–353. [Google Scholar] [CrossRef]
Satellite | Growth Stage | Date of Detection | Field Measurements |
---|---|---|---|
Sentinel-1A | Vegetative phase | 19 August 2020 | 9 August 2020 |
Reproductive phase | 28 September 2020 | 28 September 2020 | |
Ripening phase | 22 November 2020 | 25 November 2020 |
Data Acquisition Date | A | B | C | D |
---|---|---|---|---|
August | −6.12 | −1.48 | 0.02 | −5.62 |
September | −1.28 | −2.62 | 0.0017 | −0.85 |
November | −22.16 | −3.12 | 0.059 | −6.82 |
Study Watersheds | Watershed Status | Soil Moisture % | |||
---|---|---|---|---|---|
Mean | Mean Difference | T Value | Significance | ||
Debre Mewi | Treated | 34.65 | 1.71 ** | 1.62 | 0.007 |
Sholit | Untreated | 32.94 |
Slope Position | Watershed Status | Soil Moisture | |
---|---|---|---|
Lower (1–15%) | Treated | Mean | 37.24 a |
Untreated | Mean | 36.03 b | |
p values | <0.05 | ||
Middle (15–30%) | Treated | Mean | 34.25 a |
Untreated | Mean | 32.548 b | |
p values | <0.05 | ||
Upper (30–50%) | Treated | Mean | 30.00 a |
Untreated | Mean | 29.12 b | |
p values | <0.05 |
Landscape Position | Vegetative Stage | Reproductive Stage | Ripening Stage | |||
---|---|---|---|---|---|---|
0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | 0–15 cm | 15–30 cm | |
Treated upper | 42.65 | 46.20 | 41.63 | 46.34 | 31.02 | 34.05 |
Treated lower | 43.93 | 49.01 | 40.21 | 44.36 | 29.96 | 32.34 |
Untreated upper | 39.55 | 41.03 | 39.71 | 40.23 | 32.09 | 30.36 |
Untreated lower | 41.95 | 42.36 | 39.00 | 41.89 | 29.32 | 31.74 |
Land Use Land Cover Classes | Debre Mewi Watershed | Sholit Watershed | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2020 | 1990 | 2020 | |||||
Area (ha) | Area (%) | Area (ha) | Area (%) | Area (ha) | Area (%) | Area (ha) | Area (%) | |
Cultivated land | 400.59 | 68 | 376.76 | 64 | 176.10 | 60 | 168.41 | 57 |
Eucalyptus tree | 38.63 | 7 | 125.89 | 22 | 24.27 | 8 | 53.84 | 18 |
Grazing land | 50.44 | 9 | 55.69 | 10 | 43.16 | 15 | 47.45 | 16 |
Mixed forest | 95.66 | 16 | 26.96 | 5 | 49.61 | 17 | 23.53 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damtie, B.B.; Mengistu, D.A.; Waktola, D.K.; Meshesha, D.T. Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia. Agriculture 2022, 12, 417. https://doi.org/10.3390/agriculture12030417
Damtie BB, Mengistu DA, Waktola DK, Meshesha DT. Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia. Agriculture. 2022; 12(3):417. https://doi.org/10.3390/agriculture12030417
Chicago/Turabian StyleDamtie, Bekele Bedada, Daniel Ayalew Mengistu, Daniel Kassahun Waktola, and Derege Tsegaye Meshesha. 2022. "Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia" Agriculture 12, no. 3: 417. https://doi.org/10.3390/agriculture12030417
APA StyleDamtie, B. B., Mengistu, D. A., Waktola, D. K., & Meshesha, D. T. (2022). Impacts of Soil and Water Conservation Practice on Soil Moisture in Debre Mewi and Sholit Watersheds, Abbay Basin, Ethiopia. Agriculture, 12(3), 417. https://doi.org/10.3390/agriculture12030417