Experimental Assessment of the Elastic Properties of Exocarp–Mesocarp and Beans of Coffea arabica L. var. Castillo Using Indentation Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection and Ripening Stage Classification
2.2. Indentation Test Theory and Parameters
2.3. Experimental Set-Up for the Indentation Tests on Coffee Fruits and Beans
3. Results
3.1. Force versus Displacement Curves
3.2. Characterization of Young’s Modulus and Indentation Hardness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. OECD Review of Agriculture Policies: Colombia 2015; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- Bermeo, H.; Baham, F.; Arag, R. Is coffee (Coffea arabica L.) Quality Related to a Combined Farmer—Farm Profile? Sustainability 2020, 12, 9518. [Google Scholar] [CrossRef]
- Moreira, R.M.G.; Teixeira, M.M.; Santos, F.L.; Fernandes, H.C.; Cecon, P.R. Preliminary Design of a Coffee Harvester. Semin. Agrar. 2016, 37, 2933–2946. [Google Scholar] [CrossRef] [Green Version]
- Cardona, C.I.; Tinoco, H.A.; Perdomo-hurtado, L.; López-guzmán, J.; Pereira, D.A. Vibrations Analysis of the Fruit-pedicel System of Coffea arabica Var. Castillo Using Time–Frequency and Wavelets Techniques. Appl. Sci. 2021, 11, 9346. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, D. Indentation Experiment and the Finite Element Analysis of Potatoes and Apples. Int. Agric. Eng. J. 2015, 24, 19–27. [Google Scholar]
- Abdel-Sattar, M.; Almutairi, K.F.; Al-Saif, A.M.; Ahmed, K.A. Fruit Properties during the Harvest Period of Eleven Indian Jujube (Ziziphus mauritiana Lamk.) Cultivars. Saudi J. Biol. Sci. 2021, 28, 3424–3432. [Google Scholar] [CrossRef] [PubMed]
- Tinoco, H.A.; Ocampo, D.A.; Peña, F.M.; Sanz-Uribe, J.R. Finite Element Modal Analysis of the Fruit-Peduncle of Coffea arabica L. Var. Colombia Estimating Its Geometrical and Mechanical Properties. Comput. Electron. Agric. 2014, 108, 17–27. [Google Scholar] [CrossRef]
- Martinez, A.; Marçal, D.; Gaskin, B.; Zandonadi, R. Determinación de Propiedades Físicomecánicas de los Frutos de Café (Coffea arábica Variedad Catuai) Relacionadas con la Cosecha Mecanizada. Rev. Ciênc. Téc. Agropecu. 2006, 15, 22–27. [Google Scholar]
- de Freitas Coelho, A.L.; Santos, F.L.; Pinto, F.A.C.; De Queiroz, D.M. Determinação das Propriedades Geométricas, Físicas e Mecânicas Do Sistema Fruto-Pedúnculo-Ramo Do Cafeeiro. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 286–292. [Google Scholar] [CrossRef] [Green Version]
- De Castro, R.D.; Marraccini, P. Cytology, Biochemistry and Molecular Changes during Coffee Fruit Development. Braz. J. Plant Physiol. 2006, 18, 175–199. [Google Scholar] [CrossRef] [Green Version]
- Bastida, K.; Rodriguez, A.M.; Bravo, E.L.; Torres, E.Á. Determinación de las Propiedades Físico-Mecánicas del Sistema Fruto-Pedúnculo-Pedicelo del Café Robusta en la Cosecha Mecanizada. Rev. Ing. Agríc. 2015, 5, 3–9. [Google Scholar]
- Aristizábal-Torres, I.D.; Oliveros-Tascón, C.E.; Alvarez-Mejía, F. Propiedades físico-mecánicas del árbol de café y su relación con la mecanización de la cosecha. Cenicafé 1999, 50, 313–326. [Google Scholar]
- Villibor, G.P.; Santos, F.L.; de Queiroz, D.M.; Junior, J.K.K.; Pinto, F.D.A.D.C. Dynamic Behavior of Coffee Fruit-Stem System Using Modeling of Flexible Bodies. Comput. Electron. Agric. 2019, 166, 105009. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Chanona-Pérez, J.J.; Méndez-Méndez, J.V.; Arzate-Vázquez, I.; Hernández-Varela, J.D.; Güemes, N. Recent Advances in Atomic Force Microscopy for Assessing the Nanomechanical Properties of Food Materials. Trends Food Sci. Technol. 2019, 87, 59–72. [Google Scholar] [CrossRef]
- Marquez-Cardozo, C.J.; Cartagena-Valenzuela, J.; Ciro-Velásquez, H. Physicochemical Characteristics and Finite Element Simulation of Firmness in Soursop Fruits (Annona muricata L. Cv. Elita) during Postharvest. Dyna 2012, 79, 141–147. [Google Scholar]
- Posé, S.; Paniagua, C.; Matas, A.J.; Gunning, A.P.; Morris, V.J.; Quesada, M.A.; Mercado, J.A. A Nanostructural View of the Cell Wall Disassembly Process during Fruit Ripening and Postharvest Storage by Atomic Force Microscopy. Trends Food Sci. Technol. 2019, 87, 47–58. [Google Scholar] [CrossRef]
- Brulé, V.; Rafsanjani, A.; Pasini, D.; Western, T.L. Hierarchies of Plant Stiffness. Plant Sci. 2016, 250, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Bahri, A.; Ellouz, M.; Klöcker, M.; Kordisch, T.; Elleuch, K. Brinell Indentation Behavior of the Stainless Steel X2CrNi18-9: Modeling and Experiments. Int. J. Mech. Sci. 2019, 163, 105142. [Google Scholar] [CrossRef]
- Kalkhoran, S.M.; Brian Choi, W.; Gouldstone, A. Estimation of Plastic Anisotropy in Ni-5% Al Coatings via Spherical Indentation. Acta Mater. 2012, 60, 803–810. [Google Scholar] [CrossRef]
- Patel, S.; Sun, C.C. Macroindentation Hardness Measurement—Modernization and Applications. Int. J. Pharm. 2016, 506, 262–267. [Google Scholar] [CrossRef]
- Lucas, P.W.; Constantino, P.J.; Chalk, J.; Ziscovici, C.; Wright, B.W.; Fragaszy, D.M.; Hill, D.A.; Lee, J.J.; Chai, H.; Darvell, B.W. Indentation as a Technique to Assess the Mechanical Properties of Fallback Foods. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2009, 140, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Njeugna, E.; Ganou, M.B.K.; Ndapeu, D.; Foba, J.N.T.; Sikame, N.R.T.; Huisken, P.W.M. An Instrumented Macro-Indentation Method for Determining the Mechanical Properties of Coconut Shell (Coco Nucifera of Cameroon). Mech. Mater. Sci. Eng. 2016. [Google Scholar] [CrossRef]
- Torres, F.G.; Le Bourhis, E.; Gonzales, K.N. Exploring the Mechanical Properties of Hard Botanical Structures of Two Tropical Plants. Bioinspired Biomim. Nanobiomater. 2016, 5, 96–105. [Google Scholar] [CrossRef]
- Vicente-Flores, M.; Güemes-Vera, N.; Chanona-Pérez, J.J.; Perea-Flores, M.d.J.; Arzate-Vázquez, I.; Quintero-Lira, A.; Sánchez-Fuentes, C.E. Study of Cellular Architecture and Micromechanical Properties of Cuajilote Fruits (Parmentiera edulis DC) Using Different Microscopy Techniques. Microsc. Res. Tech. 2021, 84, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.P.; da Silva, F.M.; Magalhães, R.R. Application of Finite Elements Method for Structural Analysis in a Coffee Harvester. Engineering 2014, 6, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.L.; De Queiroz, D.M.; Sárvio, D.; Valente, M. Simulation of the Dynamic Behavior of the Coffee Fruit-Stem System Using Finite Element Method. Acta Sci. 2015, 37, 11–17. [Google Scholar] [CrossRef]
- Cerruto, E.; Aglieco, C.; Gottschalk, K.; Surdilovic, J.; Manetto, G.; Geyer, M.; Cerruto, C.; Aglieco, C.; Gottschalk, K.; Surdilovic, J.; et al. FEM Analysis of Effects of Mechanical Impact Parameters on Fruit Characteristics. AgricEngInt CIGR J. 2015, 17, 430–440. [Google Scholar]
- Tinoco, H.A. Modeling Elastic and Geometric Properties of Coffea Arabica L. Var. Colombia Fruits by an Experimental-Numerical Approach. Int. J. Fruit Sci. 2017, 17, 159–174. [Google Scholar] [CrossRef]
- Zdunek, A.; Kurenda, A. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope. Sensors 2013, 13, 12175–12191. [Google Scholar] [CrossRef] [Green Version]
- Khodabakhshian, R.; Naeemi, A.; Bayati, M.R. Determination of Texture Properties of Banana Fruit Cells with an Atomic Force Microscope: A Case Study on Elastic Modulus and Stiffness. J. Texture Stud. 2021, 52, 389–399. [Google Scholar] [CrossRef]
- Zulkifli, N.; Hashim, N.; Harith, H.H.; Mohamad Shukery, M.F. Finite Element Modelling for Fruit Stress Analysis—A Review. Trends Food Sci. Technol. 2020, 97, 29–37. [Google Scholar] [CrossRef]
- Cardona, C.I.; Tinoco, H.A.; Pereira, D.A.; Buitrago-Osorio, J.; Perdomo-Hurtado, L.; Hurtado-Hernandez, M.; Lopez-Guzma, J. Vibration Shapes Identification Applying Eulerian Video Magnification on Coffee Fruits to Study the Selective Harvesting. In Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika (ME), Prague, Czech Republic, 2–4 December 2020; IEEE: New York, NY, USA, 2020; pp. 242–249. [Google Scholar] [CrossRef]
- Tinoco, H.A.; Peña, F.M. Mechanical and Geometrical Characterization of Fruits Coffea Arabica L. Var. Colombia to Simulate the Ripening Process by Finite Element Analysis. Eng. Agric. Environ. Food 2019, 12, 367–377. [Google Scholar] [CrossRef]
- Ferraz, G.A.e.S.; Moreira da Silva, F.; de Carvalho Alves, M.; de Lima Bueno, R.; Negrini da Costa, P.A. Geostatistical Analysis of Fruit Yield and Detachment Force in Coffee. Precis. Agric. 2012, 13, 76–89. [Google Scholar] [CrossRef]
- Ferreira Júnior, L.d.G.; da Silva, F.M.; Ferreira, D.D.; Simão, S.D.; de Souza, G.C.; Ferreira, L.K. Characterization of the Coffee Fruit Detachment Force in Crop Subjected to Mechanized Harvesting. Coffee Sci. 2018, 13, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Alvarado, G.; Posada-Suarez, H.E.; Cortina-Guerrero, H.A. CASTILLO: Nueva Variedad de Café Con Resistencia a La Roya; Cenicafé: Manizales, Colombia, 2005. [Google Scholar]
- Cortina, H.A.; Moncada, M.; Herrera, J.C. VARIEDAD CASTILLO Preguntas Frecuentes; Cenicafé: Manizales, Colombia, 2012. [Google Scholar]
- Ciro, H.J. Coffee Harvesting I: Determination of the Natural Frequencies of the Fruit Stem System in Coffee Trees. Appl. Eng. Agric. 2001, 17, 475–479. [Google Scholar] [CrossRef]
- Arcila, J.; Jaramillo, A. Relación Entre la Humedad del Suelo, la Floración y el Desarrollo del Fruto del Cafeto; Cenicafé: Chinchina, Colombia, 2003; Volume 311. [Google Scholar]
- Jaramillo-Robledo, A.; Arcila-Pulgarín, J. Variabilidad Climática en la Zona Cafetera Colombiana Asociada al Evento de el Niño y su Efecto en la Caficultura; Cenicafé: Chinchina, Colombia, 2009. [Google Scholar]
- Rincon-Jimenez, A.; Tinoco, H.A.; Buitrago-Osorio, J.; Ocampo, O.; Berrio, L.V.; Rodriguez-Sotelo, J.L.; Arizmendi, C. Ripeness Stage Characterization of Coffee Fruits (Coffea arabica L. Var. Castillo) Applying Chromaticity Maps Obtained from Digital Images. Mater. Today Proc. 2020, 44, 1271–1278. [Google Scholar] [CrossRef]
- Tabor, D. A Simple Theory of Static and Dynamic Hardness. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 192, 247–274. [Google Scholar]
- Czerner, M.; Fellay, L.S.; Suárez, M.P.; Frontini, P.M.; Fasce, L.A. Determination of Elastic Modulus of Gelatin Gels by Indentation Experiments. Procedia Mater. Sci. 2015, 8, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Fuerte, A. Análisis Del Comportamiento Viscoelástico en Materiales Compuestos Utilizando Nanoindentación. Ph.D. Thesis, Instituto Politécnico Nacional, Ciudad de México, Mexico, 2014. [Google Scholar]
- Khan, M.I.H.; Patel, N.; Mahiuddin, M.; Karim, M.A. Characterisation of Mechanical Properties of Food Materials during Drying Using Nanoindentation. J. Food Eng. 2021, 291, 110306. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Johnson, K.L.; Greenwood, J.A.; Higginson, J.G. The Contact of Elastic Regular Wavy Surfaces. Int. J. Mech. Sci. 1985, 27, 383–396. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; de Carvalho Neto, D.P.; Júnior, A.I.M.; Vásquez, Z.S.; Medeiros, A.B.P.; Vandenberghe, L.P.S.; Soccol, C.R. Exploring the Impacts of Postharvest Processing on the Aroma Formation of Coffee Beans—A Review. Food Chem. 2019, 272, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Luo, J.; Dean, T.A. Techniques for Determining Mechanical Properties of Power-Law Materials by Instrumented Indentation Tests. Key Eng. Mater. 2007, 340, 555–562. [Google Scholar] [CrossRef]
- Marín, S.M.; Arcila, J.; Montoya, E.C.; Oliveros, C.E. Cambios Físicos y Químicos Durante la Maduración del Fruto de Café Coffea arabica L. Var Colombia. Cenicafé 2004, 54, 208–225. [Google Scholar]
- Janissen, B.; Huynh, T. Chemical Composition and Value-Adding Applications of Coffee Industry by-Products: A Review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Babarinsa, F.A.; Ige, M.T. Young’s Modulus for Packaged Roma Tomatoes under Compressive Loading. Int. J. Sci. Eng. Res. 2012, 3, 1–7. [Google Scholar]
- Khodabakhshian, R.; Emadi, B. Determination of the Modulus of Elasticity in Agricultural Seeds on the Basis of Elasticity Theory. Middle-East J. Sci. Res. 2011, 7, 367–373. [Google Scholar]
Variable | Parameter Value |
---|---|
Environmental temperature | 28.8 ± 0.5 °C |
Atmospheric pressure | 75.9 kPa |
Relative humidity | 81 ± 1.0% |
Wind speed | 3 km/h west-northwest direction |
Altitude | 1352 m |
Coordinates | 5°0′40″, 75°47′44″ |
Coffee tree age | 2 years |
(MPa) | ||
---|---|---|
550,000 | 0.22 | 0.3 |
Exocarp-Mesocarp | Beans | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mm2) | Std. | (mm) | Std. | S (N/mm) | Std. | (mm2) | Std. | (mm) | Std. | S (N/mm) | Std. | |
Unripe | 6.435 | 0.091 | 0.244 | 0.056 | 48.57 | 13.30 | 6.646 | 0.006 | 0.505 | 0.038 | 23.49 | 5.630 |
Semi-ripe | 6.573 | 0.038 | 0.348 | 0.039 | 55.38 | 15.69 | 6.440 | 0.140 | 0.253 | 0.080 | 78.83 | 21.49 |
Ripe | 35.98 | 0.184 | 0.753 | 0.100 | 50.70 | 10.00 | 6.335 | 0.075 | 0.186 | 0.039 | 133.3 | 11.06 |
Overripe | 36.06 | 0.090 | 0.621 | 0.208 | 15.08 | 7.035 | 6.269 | 0.076 | 0.153 | 0.036 | 124.5 | 10.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinoco, H.A.; Buitrago-Osorio, J.; Perdomo-Hurtado, L.; Lopez-Guzman, J.; Ibarra, C.A.; Rincon-Jimenez, A.; Ocampo, O.; Berrio, L.V. Experimental Assessment of the Elastic Properties of Exocarp–Mesocarp and Beans of Coffea arabica L. var. Castillo Using Indentation Tests. Agriculture 2022, 12, 502. https://doi.org/10.3390/agriculture12040502
Tinoco HA, Buitrago-Osorio J, Perdomo-Hurtado L, Lopez-Guzman J, Ibarra CA, Rincon-Jimenez A, Ocampo O, Berrio LV. Experimental Assessment of the Elastic Properties of Exocarp–Mesocarp and Beans of Coffea arabica L. var. Castillo Using Indentation Tests. Agriculture. 2022; 12(4):502. https://doi.org/10.3390/agriculture12040502
Chicago/Turabian StyleTinoco, Hector A., Jaime Buitrago-Osorio, Luis Perdomo-Hurtado, Juliana Lopez-Guzman, Carlos A. Ibarra, Alexander Rincon-Jimenez, Olga Ocampo, and Lina V. Berrio. 2022. "Experimental Assessment of the Elastic Properties of Exocarp–Mesocarp and Beans of Coffea arabica L. var. Castillo Using Indentation Tests" Agriculture 12, no. 4: 502. https://doi.org/10.3390/agriculture12040502
APA StyleTinoco, H. A., Buitrago-Osorio, J., Perdomo-Hurtado, L., Lopez-Guzman, J., Ibarra, C. A., Rincon-Jimenez, A., Ocampo, O., & Berrio, L. V. (2022). Experimental Assessment of the Elastic Properties of Exocarp–Mesocarp and Beans of Coffea arabica L. var. Castillo Using Indentation Tests. Agriculture, 12(4), 502. https://doi.org/10.3390/agriculture12040502