Responses of Lactation, Rumen Fermentation and Blood Biochemical Parameters with Increasing Dietary Inulin Supplementation in Mid-Lactation Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Diets and Animals
2.2. Feed Analysis
2.3. Rumen Fluid Sampling and Analysis
2.4. Milk Sampling and Analysis
2.5. Blood Sampling and Analysis
2.6. Statistical Analyses
3. Results
3.1. Rumen Fermentation
3.2. Animal Performance
3.3. Milk Fatty Acids
3.4. Serum Metabolites
4. Discussion
4.1. The Effects of Inulin on Rumen Fermentation
4.2. The Effects of Inulin on Lactation Performance
4.3. The Effects of Inulin on Milk Fatty Acids
4.4. The Effects of Inulin on Serum Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lepczyński, A.; Herosimczyk, A.; Barszcz, M.; Ożgo, M.; Michałek, K.; Grabowska, M.; Tuśnio, A.; Szczerbińska, D.; Skomiał, J. Diet supplemented either with dried chicory root or chicory inulin significantly influence kidney and liver mineral content and antioxidative capacity in growing pigs. Animal 2021, 15, 100129. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, B.; Danilčenko, H.; Jariene, E.; Skiba, D.; Rachoń, L.; Barbaś, P.; Pszczółkowski, P. Nutritional value of Jerusalem artichoke tubers (Helianthus tuberosus L.) grown in organic system under Lithuanian and Polish conditions. Agriculture 2021, 11, 440. [Google Scholar] [CrossRef]
- Ryz, N. Investigating the Role of Inulin for Enhancing Immune Function in Zinc Deficient Rats; University of Manitoba: Winnipeg, MB, Canada, 2007. [Google Scholar]
- Kumar, C.G.; Sripada, S.; Poornachandra, Y. Chapter 14–Status and future prospects of fructooligosaccharides as nutraceuticals. In Role of Materials Science in Food Bioengineering; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 451–503. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493s–2502s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bastard, Q.; Chapelet, G.; Javaudin, F.; Lepelletier, D.; Batard, E.; Montassier, E. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Sentko, A.; Alexiou, H. Inulin and Health Benefits. In Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 675–715. [Google Scholar] [CrossRef]
- Wu, R.Y.; Määttänen, P.; Napper, S.; Scruten, E.; Li, B.; Koike, Y.; Johnson-Henry, K.C.; Pierro, A.; Rossi, L.; Botts, S.R.; et al. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome 2017, 5, 135. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Wettstein, H.R.; Machmüller, A.; Soliva, C.R.; Bach Knudsen, K.E.; Madsen, J.; Kreuzer, M. Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci. 2004, 84, 265–276. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Wettstein, H.R.; Machmüller, A.; Knudsen, K.E.B.; Madsen, J.; Kreuzer, M. Digestive and metabolic utilisation of dairy cows supplemented with concentrates characterised by different carbohydrates. Anim. Feed Sci. Tech. 2006, 126, 43–61. [Google Scholar] [CrossRef]
- Tian, K.; Liu, J.; Sun, Y.; Wu, Y.; Chen, J.; Zhang, R.; He, T.; Dong, G. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Anim. Feed Sci. Tech. 2019, 258, 114299. [Google Scholar] [CrossRef]
- Poulsen, M.; Jensen, B.B.; Engberg, R.M. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Anaerobe 2012, 18, 83–90. [Google Scholar] [CrossRef]
- Tóth, S.; Kovács, M.; Bóta, B.; Szabó-Fodor, J.; Bakos, G.; Fébel, H. Effect of mannanoligosaccharide (MOS) and inulin supplementation on the performance and certain physiological parameters of calves reared on milk replacer. J. Appl. Anim. Res. 2020, 48, 228–234. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wang, Y.; Nan, X.; Zhao, Y.; Jiang, L.; Wang, H.; Hua, D.; Zhang, F.; Wang, Y.; Liu, J.; Yao, J.; et al. Dietary supplementation with inulin improves lactation performance and serum lipids by regulating the rumen microbiome and metabolome in dairy cows. Anim. Nutr. 2021, 7, 1189–1204. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Liu, W.; Mi, S.; Zhang, C.; Li, X.; Wu, T.; Yu, Q. Comparison of six methylation methods for fatty acid determination in yak bone using gas chromatography. Food Anal. Method. 2017, 10, 3496–3507. [Google Scholar] [CrossRef]
- Na, S. Analysis of Fatty Acids in Infant Formulas Using An Agilent J&W HP-88 Capillary GC Column. Available online: https://www.agilent.com/cs/library/applications/5990-8429EN.pdf (accessed on 3 March 2022).
- Perea, K.; Perz, K.; Olivo, S.K.; Williams, A.; Lachman, M.; Ishaq, S.L.; Thomson, J.; Yeoman, C.J. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota1. J. Anim. Sci. 2017, 95, 2585–2592. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.J.; Miller, R.A.; Ericsson, A.C.; Harrison, D.C.; Strong, R.; Schmidt, T.M. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019, 19, 130. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Jiang, A.; Wang, X.; Zhou, Y.; Tang, W.; Ren, C.; Qian, X.; Zhou, Z.; Gong, A. NMN maintains intestinal homeostasis by regulating the gut microbiota. Front. Nutr. 2021, 8, 714604. [Google Scholar] [CrossRef]
- Binek, M.; Szynkiewicz, Z.M. Physiological properties and classification of strains of Treponema sp. isolated from pigs in poland. Comp. Immunol. Microbiol. Infect. Dis. 1984, 7, 141–148. [Google Scholar] [CrossRef]
- Kopečný, J.; Zorec, M.; Mrázek, J.; Kobayashi, Y.; Marinšek-Logar, R. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int. J. Syst. Evol. Micr. 2003, 53, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Rees, E.M.R.; Lloyd, D.; Williams, A.G. The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2. FEMS Microbiol. Lett. 1995, 133, 175–180. [Google Scholar] [CrossRef]
- Engels, C.; Ruscheweyh, H.-J.; Beerenwinkel, N.; Lacroix, C.; Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 2016, 7, 713. [Google Scholar] [CrossRef] [Green Version]
- Dehority, B.A.; Scott, H.W.; Kowaluk, P. Volatile fatty acid requirements of cellulolytic rumen bacteria. J. Bacteriol. 1967, 94, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Wang, C.; Guo, G.; Huo, W.J.; Zhang, S.L.; Pei, C.X.; Zhang, Y.L.; Wang, H. Effects of branched-chain volatile fatty acids on lactation performance and mRNA expression of genes related to fatty acid synthesis in mammary gland of dairy cows. Animal 2018, 12, 2071–2079. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B.; Weimer, P.J. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes. J. Dairy Sci. 2016, 99, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Woolpert, M.E.; Dann, H.M.; Cotanch, K.W.; Melilli, C.; Chase, L.E.; Grant, R.J.; Barbano, D.M. Management, nutrition, and lactation performance are related to bulk tank milk de novo fatty acid concentration on northeastern US dairy farms. J. Dairy Sci. 2016, 99, 8486–8497. [Google Scholar] [CrossRef]
- Larsen, M.; Kristensen, N.B. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. J. Dairy Sci. 2009, 92, 3306–3318. [Google Scholar] [CrossRef]
- Lin, Y.; Sun, X.; Hou, X.; Qu, B.; Gao, X.; Li, Q. Effects of glucose on lactose synthesis in mammary epithelial cells from dairy cow. BMC Vet. Res. 2016, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Park, Y. 12–Improving Goat Milk. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 304–346. [Google Scholar] [CrossRef]
- Loften, J.R.; Linn, J.G.; Drackley, J.K.; Jenkins, T.C.; Soderholm, C.G.; Kertz, A.F. Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. J. Dairy Sci. 2014, 97, 4661–4674. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Zhang, W.; Zhang, Y.; Zhao, P.; Zhang, S.; Pang, X.; Vervoort, J.; Lu, J.; Lv, J. Triglyceride and fatty acid composition of ruminants milk, human milk, and infant formulae. J. Food Compos. Anal. 2022, 106, 104327. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Kadegowda, A.K.; Piperova, L.S.; Erdman, R.A. Principal component and multivariate analysis of milk long-chain fatty acid composition during diet-induced milk fat depression. J. Dairy Sci. 2008, 91, 749–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, C.M.C.; Edel, A.L.; Patenaude, A.F.; McCullough, R.S.; Blackwood, D.P.; Chouinard, P.Y.; Paquin, P.; Lamarche, B.t.; Pierce, G.N. Dietary Vaccenic Acid Has Antiatherogenic Effects in LDLr−/− Mice. J. Nutr. 2009, 140, 18–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilliard, Y.; Ferlay, A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 2004, 44, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability–A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, P.; Kim, J.Y.; Singh, M.; Shin, Y.-K.; Kim, J.; Kumbrink, J.; Wu, Y.; Lee, M.-J.; Kirsch, K.H.; Fried, S.K.; et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol. Cell. Biol. 2013, 33, 3659–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beylot, M. Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br. J. Nutr. 2005, 93 (Suppl. S1), S163–S168. [Google Scholar] [CrossRef] [PubMed]
- Han, K.H.; Tsuchihira, H.; Nakamura, Y.; Shimada, K.; Ohba, K.; Aritsuka, T.; Uchino, H.; Kikuchi, H.; Fukushima, M. Inulin-type fructans with different degrees of polymerization improve lipid metabolism but not glucose metabolism in rats fed a high-fat diet under energy restriction. Digest. Dis. Sci. 2013, 58, 2177–2186. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhong, X.; Shi, W.Y.; Guo, B. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. Afri. J. Biotechnol. 2011, 10, 9213–9217. [Google Scholar] [CrossRef] [Green Version]
- Bobbo, T.; Fiore, E.; Gianesella, M.; Morgante, M.; Gallo, L.; Ruegg, P.L.; Bittante, G.; Cecchinato, A. Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds. Animal 2017, 11, 2309–2319. [Google Scholar] [CrossRef]
- Grela, E.R.; Sobolewska, S.; Kowalczuk-Vasilev, E.; Krasucki, W. Effect of dietary inulin source on piglet performance, immunoglobulin concentration, and plasma lipid profile. B. Vet. I. Pulawy 2014, 58, 453. [Google Scholar] [CrossRef] [Green Version]
- Watzl, B.; Girrbach, S.; Roller, M. Inulin, oligofructose and immunomodulation. Br. J. Nutr. 2005, 93 (Suppl. S1), S49–S55. [Google Scholar] [CrossRef] [PubMed]
- Pol, J.G.; Caudana, P.; Paillet, J.; Piaggio, E.; Kroemer, G. Effects of interleukin-2 in immunostimulation and immunosuppression. J. Exp. Med. 2020, 217, e20191247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly-Quagliana, K.A.; Nelson, P.D.; Buddington, R.K. Dietary oligofructose and inulin modulate immune functions in mice. Nutr. Res. 2003, 23, 257–267. [Google Scholar] [CrossRef]
Ingredients | Chemical Composition | ||
---|---|---|---|
Corn silage | 44.20 | Dry matter, % of fresh | 46.00 |
Alfalfa hay, chopped | 4.37 | Crude protein | 17.00 |
Oat grass | 8.39 | Neutral detergent fiber | 29.40 |
Alfalfa leaf meal | 2.17 | Acid detergent fiber | 16.60 |
Steam-flaked corn | 5.22 | Ether extract | 4.22 |
Corn grain, ground | 6.48 | Ca | 0.85 |
Soybean hull | 2.17 | P | 0.52 |
Sugar beet pellets | 2.17 | Ash | 8.10 |
Soya meal | 8.74 | Net energy for lactation, Mcal/kg DM | 1.74 |
Cottonseed | 3.48 | ||
Corn bran | 3.04 | ||
Rapeseed meal | 2.13 | ||
Extruded soybean | 1.74 | ||
Megalac 1 | 0.87 | ||
Fatty powder 2 | 0.48 | ||
5% Premix 3 | 4.35 |
Items | Inulin, g/d per Head (n = 6) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 50 | 150 | 200 | 250 | 350 | Linear | Quadratic | ||
pH | 6.56 | 6.48 | 6.39 | 6.30 | 6.34 | 6.34 | 0.015 | <0.01 | <0.01 |
Ammonia nitrogen, mg/dL | 13.3 | 12.9 | 11.0 | 8.90 | 9.07 | 8.57 | 0.392 | <0.01 | <0.01 |
Lactic acid, mmol/L | 0.84 | 0.87 | 0.90 | 0.92 | 0.89 | 0.91 | 0.008 | 0.03 | 0.26 |
Acetate, mmol/L | 67.9 | 66.9 | 76.5 | 87.5 | 80.4 | 83.9 | 1.45 | <0.01 | <0.01 |
Propionate, mmol/L | 25.2 | 23.5 | 28.5 | 30.3 | 29.6 | 31.2 | 0.59 | <0.01 | <0.01 |
Butyrate, mmol/L | 11.0 | 10.3 | 12.3 | 13.6 | 14.2 | 14.2 | 0.40 | <0.01 | <0.01 |
Isobutyrate, mmol/L | 1.42 | 1.49 | 1.63 | 1.69 | 1.67 | 1.72 | 0.070 | 0.30 | 0.04 |
Valerate, mmol/L | 1.31 | 1.47 | 1.44 | 1.67 | 1.79 | 1.78 | 0.089 | 0.46 | 0.06 |
Isovalerate, mmol/L | 1.94 | 2.12 | 2.54 | 2.65 | 2.77 | 2.68 | 0.062 | 0.62 | 0.47 |
Total volatile fatty acids, mmol/L | 109 | 106 | 123 | 137 | 130 | 135 | 2.4 | <0.01 | 0.08 |
Acetate/propionate | 2.69 | 2.85 | 2.68 | 2.89 | 2.72 | 2.69 | 0.027 | 0.84 | 0.49 |
Items 1 | Inulin, g/d per Head (n = 6) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 50 | 150 | 200 | 250 | 350 | Linear | Quadratic | ||
Body weight, kg | 551 | 550 | 557 | 557 | 557 | 558 | 1.5 | 0.29 | 0.72 |
Milk yield, kg/d | 33.5 | 34.1 | 34.6 | 36.0 | 35.3 | 37.0 | 0.17 | <0.01 | 0.24 |
Energy-corrected milk, kg/d | 32.4 | 33.1 | 33.9 | 37.1 | 34.9 | 36.8 | 0.33 | <0.01 | 0.06 |
Fat-corrected milk, kg/d | 32.3 | 33.1 | 33.9 | 36.8 | 34.8 | 36.4 | 0.35 | <0.01 | 0.07 |
Milk fat, % | 3.78 | 3.80 | 3.86 | 4.14 | 3.91 | 3.88 | 0.159 | 0.04 | 0.27 |
Milk protein, % | 3.31 | 3.31 | 3.36 | 3.54 | 3.40 | 3.51 | 0.080 | 0.08 | 0.97 |
Milk fat/milk protein | 1.14 | 1.15 | 1.15 | 1.17 | 1.15 | 1.11 | 0.013 | 0.96 | 0.25 |
Lactose, % | 5.17 | 5.19 | 5.17 | 5.18 | 5.22 | 5.21 | 0.030 | 0.32 | <0.01 |
Milk urea nitrogen, mmol/L | 6.13 | 6.02 | 5.00 | 4.58 | 5.57 | 4.76 | 0.297 | <0.01 | 0.48 |
Somatic cell counts, ×103/mL | 314 | 316 | 311 | 278 | 316 | 259 | 4.9 | 0.04 | 0.17 |
Items, g/100 g FA | Inulin, g/d per Head (n = 6) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 50 | 150 | 200 | 250 | 350 | Linear | Quadratic | ||
Saturated fatty acids | 68.6 | 70.4 | 72.7 | 76.0 | 71.9 | 75.2 | 0.65 | <0.01 | <0.01 |
C4:0 | 2.99 | 3.02 | 3.28 | 3.42 | 3.38 | 3.29 | 0.039 | 0.01 | 0.29 |
C6:0 | 2.14 | 2.28 | 2.20 | 2.25 | 2.46 | 2.22 | 0.050 | 0.47 | 0.72 |
C8:0 | 1.05 | 1.35 | 1.28 | 1.36 | 1.42 | 1.35 | 0.033 | 0.04 | 0.22 |
C10:0 | 2.40 | 3.05 | 3.12 | 3.38 | 2.77 | 3.35 | 0.091 | 0.03 | 0.11 |
C11:0 | 0.04 | 0.06 | 0.04 | 0.05 | 0.06 | 0.05 | 0.009 | 0.68 | 0.63 |
C12:0 | 3.38 | 3.56 | 3.60 | 3.60 | 3.63 | 3.57 | 0.129 | 0.83 | 0.07 |
C13:0 | 0.10 | 0.14 | 0.11 | 0.12 | 0.15 | 0.12 | 0.005 | 0.01 | 0.14 |
C14:0 | 11.1 | 12.2 | 11.3 | 11.8 | 11.5 | 11.6 | 0.22 | 0.87 | 0.06 |
C15:0 | 1.09 | 1.11 | 1.06 | 1.10 | 1.14 | 1.12 | 0.019 | 0.78 | 0.07 |
C16:0 | 30.3 | 29.3 | 31.0 | 33.5 | 31.2 | 33.1 | 0.39 | 0.03 | 0.14 |
C17:0 | 0.47 | 0.45 | 0.49 | 0.46 | 0.46 | 0.48 | 0.006 | 0.29 | 0.28 |
C18:0 | 9.86 | 9.53 | 9.61 | 8.18 | 8.38 | 8.57 | 0.267 | 0.04 | 0.13 |
C20:0 | 0.06 | 0.06 | 0.08 | 0.08 | 0.06 | 0.07 | 0.007 | 0.16 | 0.48 |
C21:0 | 0.16 | 0.11 | 0.15 | 0.14 | 0.25 | 0.17 | 0.026 | 0.10 | 0.62 |
C22:0 | 0.11 | 0.13 | 0.09 | 0.14 | 0.06 | 0.13 | 0.008 | 0.27 | 0.54 |
Unsaturated fatty acids | 30.4 | 30.2 | 27.5 | 27.6 | 27.8 | 28.0 | 0.45 | 0.16 | 0.03 |
Monounsaturated fatty acids | 27.6 | 27.3 | 24.1 | 23.9 | 24.3 | 24.5 | 0.42 | 0.04 | 0.18 |
C14:1 | 1.92 | 1.95 | 1.55 | 1.57 | 1.70 | 1.59 | 0.06 | 0.02 | 0.32 |
C15:1 | 0.33 | 0.30 | 0.27 | 0.27 | 0.32 | 0.29 | 0.009 | 0.26 | 0.41 |
C16:1 | 1.81 | 1.68 | 1.50 | 1.61 | 1.84 | 1.65 | 0.053 | 0.31 | 0.28 |
C17:1 | 0.20 | 0.15 | 0.14 | 0.15 | 0.13 | 0.15 | 0.007 | 0.68 | 0.13 |
C18:1 trans-9 | 0.58 | 0.51 | 0.54 | 0.43 | 0.48 | 0.51 | 0.013 | 0.03 | 0.04 |
C18:1 cis-9 | 20.2 | 20.1 | 17.6 | 17.3 | 17.3 | 17.7 | 0.40 | 0.25 | 0.86 |
C20:1 | 0.44 | 0.43 | 0.34 | 0.31 | 0.35 | 0.34 | 0.018 | 0.03 | <0.01 |
C22:1 | 0.16 | 0.16 | 0.15 | 0.19 | 0.19 | 0.19 | 0.006 | 0.98 | 0.54 |
Polyunsaturated fatty acids | 2.79 | 2.80 | 3.14 | 3.41 | 3.18 | 3.27 | 0.077 | 0.04 | 0.07 |
C18:2n6 trans | 0.21 | 0.19 | 0.19 | 0.18 | 0.17 | 0.20 | 0.018 | 0.07 | 0.14 |
C18:2n6 cis | 2.11 | 2.15 | 2.42 | 2.61 | 2.46 | 2.52 | 0.048 | <0.01 | <0.01 |
C18:3n6 | 0.10 | 0.11 | 0.20 | 0.23 | 0.17 | 0.20 | 0.026 | <0.01 | <0.01 |
C18:3n3 | 0.23 | 0.20 | 0.15 | 0.19 | 0.20 | 0.17 | 0.016 | 0.27 | 0.23 |
C20:2 cis-11,14 | 0.04 | 0.04 | 0.07 | 0.08 | 0.07 | 0.08 | 0.006 | 0.25 | 0.36 |
C20:3 cis-8,11,14 | 0.05 | 0.05 | 0.07 | 0.13 | 0.10 | 0.02 | 0.010 | 0.24 | <0.01 |
C20:4 | 0.10 | 0.11 | 0.11 | 0.12 | 0.11 | 0.10 | 0.003 | 0.15 | <0.01 |
Items | Inulin, g/d per Head (n = 6) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 50 | 150 | 200 | 250 | 350 | Linear | Quadratic | ||
Total cholesterol, mmol/L | 7.88 | 7.64 | 8.42 | 6.67 | 7.50 | 7.18 | 0.159 | 0.02 | 0.06 |
Triglyceride, mmol/L | 0.47 | 0.45 | 0.46 | 0.41 | 0.44 | 0.43 | 0.004 | <0.01 | 0.15 |
Malondialdehyde, nmol/L | 2.94 | 2.89 | 2.68 | 2.02 | 2.14 | 2.25 | 0.085 | <0.01 | 0.21 |
Superoxide dismutase, U/mL | 48.1 | 48.9 | 51.5 | 52.5 | 51.7 | 50.1 | 0.28 | 0.02 | <0.01 |
Glutathione peroxidase, μmol/L | 7.84 | 7.87 | 7.90 | 8.27 | 8.30 | 8.06 | 0.081 | 0.07 | 0.49 |
Total protein, g/L | 70.8 | 71.1 | 74.9 | 75.9 | 75.1 | 71.0 | 0.53 | 0.70 | <0.01 |
Albumin, g/L | 34.9 | 34.1 | 34.3 | 36.3 | 35.8 | 34.0 | 0.30 | 0.57 | 0.02 |
Globulin, g/L | 35.9 | 37.0 | 40.6 | 39.6 | 39.3 | 37.0 | 0.60 | 0.97 | 0.26 |
Immunoglobulin A, mg/mL | 0.14 | 0.12 | 0.16 | 0.16 | 0.14 | 0.17 | 0.002 | 0.77 | 0.19 |
Immunoglobulin G, mg/mL | 3.25 | 3.11 | 2.89 | 4.29 | 2.77 | 4.12 | 0.087 | <0.01 | 0.29 |
Immunoglobulin M, mg/mL | 1.06 | 1.12 | 0.91 | 1.25 | 1.22 | 1.21 | 0.030 | 0.04 | 0.19 |
Interleukin-2, pg/mL | 193 | 196 | 175 | 231 | 171 | 244 | 4.4 | <0.01 | 0.14 |
Interleukin-6, pg/mL | 73.0 | 76.1 | 69.7 | 63.7 | 65.2 | 68.4 | 1.61 | 0.83 | 0.64 |
Interleukin-10, pg/mL | 109 | 111 | 132 | 143 | 138 | 158 | 3.8 | 0.04 | 0.03 |
Tumor necrosis factor-α, pg/mL | 247 | 253 | 268 | 284 | 255 | 277 | 7.5 | 0.31 | 0.68 |
Interferon-γ, pg/mL | 62.4 | 63.7 | 65.0 | 65.1 | 66.7 | 62.9 | 1.95 | 0.70 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Wang, Y.; Nan, X.; Jiang, L.; Wang, Y.; Liu, J.; Yao, J.; Rahman, M.T.; Xiong, B. Responses of Lactation, Rumen Fermentation and Blood Biochemical Parameters with Increasing Dietary Inulin Supplementation in Mid-Lactation Dairy Cows. Agriculture 2022, 12, 521. https://doi.org/10.3390/agriculture12040521
Zhao Y, Wang Y, Nan X, Jiang L, Wang Y, Liu J, Yao J, Rahman MT, Xiong B. Responses of Lactation, Rumen Fermentation and Blood Biochemical Parameters with Increasing Dietary Inulin Supplementation in Mid-Lactation Dairy Cows. Agriculture. 2022; 12(4):521. https://doi.org/10.3390/agriculture12040521
Chicago/Turabian StyleZhao, Yiguang, Yue Wang, Xuemei Nan, Linshu Jiang, Yapin Wang, Jun Liu, Junhu Yao, Md. Tanvir Rahman, and Benhai Xiong. 2022. "Responses of Lactation, Rumen Fermentation and Blood Biochemical Parameters with Increasing Dietary Inulin Supplementation in Mid-Lactation Dairy Cows" Agriculture 12, no. 4: 521. https://doi.org/10.3390/agriculture12040521
APA StyleZhao, Y., Wang, Y., Nan, X., Jiang, L., Wang, Y., Liu, J., Yao, J., Rahman, M. T., & Xiong, B. (2022). Responses of Lactation, Rumen Fermentation and Blood Biochemical Parameters with Increasing Dietary Inulin Supplementation in Mid-Lactation Dairy Cows. Agriculture, 12(4), 521. https://doi.org/10.3390/agriculture12040521