Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contaminated Soil Collection
2.2. Stabilizing Agents
2.3. Stabilizing Experiments
2.4. X-ray Powder Diffraction (XRPD) Analyses
2.5. Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDX) Analyses
2.6. Physicochemical Analyses
3. Results and Discussion
3.1. XRPD Analyses
3.2. Effectiveness of the Stabilization Treatment
3.3. SEM-EDX Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Truex, M.J.; Johnson, C.D.; Nimmons, M.J. Technology Survey to Support Revision to the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit at the U.S. Department of Energy’s Hanford Site; Pacific Northwest National Laboratory Report PNNL-16105; Oak Ridge, TN, USA, 2007. Available online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-16105.pdf (accessed on 8 March 2022).
- USEPA. Recent Developments for in Situ Treatment of Metal Contaminated Soils; U.S. EPA Report EPA-54; U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office: Washington, DC, USA, 1997. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/recent_dev_metals_542-r-97-004.pdf (accessed on 8 March 2022).
- USEPA. Engineering Bulletin: Technology Alternatives for the Remediation of Soils Contaminated with As, Cd, Cr, Hg, and Pb; U.S. EPA Report EPA/540/S-97/500: Washington, DC, USA, 1997. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=10002DZQ.TXT (accessed on 8 March 2022).
- He, F.; Gao, J.; Pierce, E.; Strong, P.J.; Wang, H.; Liang, L. In situ remediation technologies for mercury-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 8124–8147. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, J.; Li, S.; Wang, L.; Wei, S. Effects of several sulfur compounds on stabilization of mercury in purple soil and appropriate stabilizing conditions. Chin. J. Environ. Eng. 2018, 12, 893–903. [Google Scholar]
- Wagh, A.S.; Singh, D.; Jeong, S.Y. Mercury stabilization in chemically bonded phosphate ceramics. In Proceeding of the Workshop on Mercury Products, Processes, Waste, and the Environment: Eliminating, Reducing and Managing Risks; Environmental Protection Agency: Baltimore, MD, USA, 2000. [Google Scholar]
- Piao, H.; Bishop, P.L. Stabilization of mercury-containing wastes using sulfide. Environ. Pollut. 2006, 139, 498–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, G.; Sun, D.D.; Tay, J.H. Immobilization of mercury and zinc in an alkali-activated slag matrix. J. Hazard. Mater. 2003, 101, 65–77. [Google Scholar] [CrossRef]
- MDI. Jade Version 7.1; Material’s Data Inc.: Livermore, CA, USA, 2005. [Google Scholar]
- ICDD. Powder Diffraction File.PDF-2 Database Release; International Centre for Diffraction Data: Pennsylvania, PA, USA, 2002. [Google Scholar]
- Ministry of Environment (MOE). The Korean Standard Test (KST) Methods for Soils; Korean Ministry of Environment: Gwachun, Korea, 2010; p. 225. (In Korean)
- National Academy of Agricultural Science (NAAS). Method of Soil Chemical Analysis; Rural Development Administration: Suwon, Korea, 2010. [Google Scholar]
- Devasena, M.; Nambi, I.M. In situ stabilization of entrapped elemental mercury. J. Environ. Manag. 2013, 130, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; He, F.; Zhao, D.Y.; Barnett, M.O. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res. 2009, 43, 5171–5179. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.D.; Zhang, L.; Lai, D. Stabilization of mecury using waste ladle furnace slag. J. Air Waste Manag. Assoc. 2013, 63, 1469–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.G.; Eom, Y.; Lee, C.H.; Song, K.S. Stabilization and solidification of elemental mercury for safe disposal and/or long-term storage. J. Air Waste Manag. Assoc. 2011, 61, 1057–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil Properties | Hg Contaminated Soil | Regulatory Limit |
---|---|---|
pH(1:5) CEC(cmol/kg) EC(dS/m) | 8.23 41.05 2.14 | |
Composition (%) 2 Sand Silt Clay Texture 3 | 7.6 66.7 15.7 Silty loam | |
Hg(mg/kg) Major mineral compositions 4 | 23.1 Quartz, Muscovite Illite, Albite Clinochlore | 4(Korean warning standard 1) 0.05(WHO safe limit agricultural soil) |
Major Chemical Composition (%) | Hg Contaminated Soil | ASF | PSF | CASF | CPSF |
---|---|---|---|---|---|
SiO2 | 71.66 | 0.26 | 0.31 | 0.05 | 0.28 |
Al2O3 | 15.17 | 0.0963 | 0.144 | 0.02 | 0.06 |
Na2O | 1.14 | 2.10 | 1.37 | 3.22 | 1.29 |
MgO | 1.42 | 7.04 | 7.24 | 14.85 | 11.38 |
K2O | 4.52 | 0.356 | 0.165 | 0.36 | 0.038 |
CaO | 1.07 | 81.34 | 86.00 | 76.13 | 84.26 |
Fe2O3 | 3.6 | 0.128 | 0.0593 | 0.03 | 0.025 |
SO3 | 0.193 | 4.13 | 2.68 | 2.46 | 1.66 |
MnO | 0.0784 | - | 0.0242 | 0.004 | 0.012 |
pH(1:5) | 8.23 | 7.35 | 7.22 | 12.5 | 12.49 |
Sample ID | Contaminated Soil (wt%) | ASF/PSF (wt%) | CASF/CPSF (wt%) | Liquid to Solid (L:S) Mass Ratio |
---|---|---|---|---|
Control | 100 | 0 | 0 | 20:1 |
2 wt% ASF/PSF | 100 | 2 | 0 | 20:1 |
4 wt% ASF/PSF | 100 | 4 | 0 | 20:1 |
6 wt% ASF/PSF | 100 | 6 | 0 | 20:1 |
8 wt% ASF/PSF | 100 | 8 | 0 | 20:1 |
10 wt% ASF/PSF | 100 | 10 | 0 | 20:1 |
1 wt% CASF/CPSF | 100 | 0 | 1 | 20:1 |
2 wt% CASF/CPSF | 100 | 0 | 2 | 20:1 |
3 wt% CASF/CPSF | 100 | 0 | 3 | 20:1 |
4 wt% CASF/CPSF | 100 | 0 | 4 | 20:1 |
5 wt% CASF/CPSF | 100 | 0 | 5 | 20:1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, D.H.; Jung, S.P.; Koutsospyros, A. Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish. Agriculture 2022, 12, 542. https://doi.org/10.3390/agriculture12040542
Moon DH, Jung SP, Koutsospyros A. Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish. Agriculture. 2022; 12(4):542. https://doi.org/10.3390/agriculture12040542
Chicago/Turabian StyleMoon, Deok Hyun, Sokhee P. Jung, and Agamemnon Koutsospyros. 2022. "Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish" Agriculture 12, no. 4: 542. https://doi.org/10.3390/agriculture12040542
APA StyleMoon, D. H., Jung, S. P., & Koutsospyros, A. (2022). Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish. Agriculture, 12(4), 542. https://doi.org/10.3390/agriculture12040542