Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection
2.2. Insect Mass Rearing
2.3. Extraction of Essential Oil
2.4. Identification of Volatile Compounds
2.5. Tomato/Potato Psyllid Mortality
2.6. Mortality of Maize Weevil
2.7. Maize Weevil Selection Index
2.8. Statistical Analyzes
3. Results
3.1. Compounds Identification
3.2. Tomato/Potato Psyllid Biological Response
3.3. Mortality of Maize Weevil
3.4. Maize Weevil Selection Index (Si)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture: Trends and Challenges. Roma. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 13 January 2022).
- Manchikanti, P. Bioavailability and environmental safety of nanobiopesticides. In Nano-Biopesticides Today and Future Perspectives; Opender, K., Ed.; Academic Press: Jalandhar, India, 2019; pp. 207–222. [Google Scholar]
- Heeb, L.; Jenner, E.; Cock, M.J.W. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. J. Pest Sci. 2019, 92, 951–969. [Google Scholar] [CrossRef]
- Greenway, G.A.; Rondon, S. Economic Impacts of Zebra Chip in Idaho, Oregon, and Washington. Am. J. Potato Res. 2018, 95, 362–367. [Google Scholar] [CrossRef]
- Haapalainen, M. Biology and epidemics of Candidatus Liberibacter species, psyllid transmitted plant-pathogenic bacteria. Ann. Appl. Biol. 2014, 165, 172–198. [Google Scholar] [CrossRef]
- Liefting, L.W.; Sutherlan, P.W.; Ward, L.I.; Paice, K.L.; Weir, B.S.; Clover, G.R.G. A new, ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Dis. 2009, 93, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Munyaneza, J.E. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry. Am. J. Potato Res. 2015, 92, 230–235. [Google Scholar] [CrossRef]
- Abdullah, N.M.M. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. Afr. J. Agric. Res. 2008, 3, 60–67. [Google Scholar]
- Davidson, M.M.; Teulon, D.A.J.; Scott, I.A.W.; Workman, P. A review of the potato psyllid (Bactericera cockerelli); a new pest of potato in New Zealand. Crop Food Res. 2022, 2008, 14. [Google Scholar]
- Swisher, K.; Sengoda, V.; Dixon, J.; Munyaneza, J.; Murphy, A.; Rondon, S.; Thompson, B.; Karasev, A.; Wenninger, E.; Olsen, N.; et al. Assessing potato psyllid haplotypes in potato crops in Pacific Northwestern United States. Am. J. Pot. Res. 2014, 91, 485–491. [Google Scholar] [CrossRef]
- Wenninger, E.J.; Carroll, A.; Dahan, J.; Karasev, A.V.; Thornton, M.; Miller, J.; Nolte, P.; Olsen, N.; Price, W. Phenology of the potato psyllid, Bactericera cockerelli (Hemiptera; Triozidae), and ‘Candidatus Liberibacter solanacearum’ in commercial potato fields in Idaho. Environ. Entomol. 2017, 46, 1179–1188. [Google Scholar] [CrossRef]
- Vega, G.M.T.; Rodríguez, M.J.C.; Díaz, G.R.O.; Bujanos, M.; Mota, S.D.; Martínez, C.J.L.; Lagunes, T.A.; Garzón, T.A. Susceptibilidad a insecticidas en dos poblaciones mexicanas del salerillo, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Agrociencia 2008, 42, 463–471. (In Spanish) [Google Scholar]
- Almeyda, L.I.H.; Sánchez, J.A.; Garzón, T.J.A. Vectores causante de punta morada de la papa en Coahuila y Nuevo León, México. Agric. Tec. Mex. 2008, 34, 141–150. (In Spanish) [Google Scholar]
- Garzón-Tiznado, J.A.; Cárdenas-Valenzuela, O.G.; Bujanos-Muñiz, R.; Marín-Jarillo, A.; Becerra-Flora, A.; Velarde-Felix, S.; Reyes-Moreno, C.; González-Chavira, M.; Martínez-Carrillo, J.L. Asociación de Hemiptera: Triozidae con la enfermedad “Permanete del Tomate” en México. Agric. Tec. Mex. 2009, 35, 61–72. (In Spanish) [Google Scholar]
- Rivera-Martínez, R.; Acosta-Guadarrama, A.D.; Ramírez-Dávila, J.F.; Figueroa-Figueroa, D.K.; Maldonado-Zamora, F.I.; Lara-Díaz, A.V. Distribución espacial de las poblaciones de adultos de Bactericera cockerelli Sulc. en cultivo de tomate de cáscara (Physalis ixocarpa Brot.). South. Entomol. 2017, 42, 1057–1068. (In Spanish) [Google Scholar] [CrossRef]
- Villegas-Rodríguez, F.; Díaz-Gómez, O.; Casas-Flores, J.S.; Monreal-Vargas, C.T.; Tamayo-Mejía, F.; Aguilar-Medel, S. Actividad de dos hongos entomopatógenos, identificados molecularmente, sobre Bactericera cockerelli. Rev. Colomb. Entomol. 2017, 43, 27–33. (In Spanish) [Google Scholar] [CrossRef]
- Munyaneza, J.E.; Crosslin, J.M.; Upton, J.E. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip”, a new potato disease in southwestern United States and Mexico. J. Econ. Entomol. 2007, 100, 656–663. [Google Scholar] [CrossRef]
- Salas-Marina, M.A. Eficiencia de Insectos Vectores en la Transmisión de Fitoplasma de la Punta Morada de la Papa. Master’s Thesis, UAAAN, Coahuila, Mexico, 2006. (In Spanish). [Google Scholar]
- Silva, G.; Lagunes, A.; Rodríguez, J. Control de Sitophilus zeamais (Coleoptera: Curculionidae) con polvos vegetales solos y en mezcla con carbonato de calcio en maíz almacenado. Cienc. Investig. Agrar. 2003, 30, 153–160. (In Spanish) [Google Scholar] [CrossRef]
- Ortiz, U.A.; Silva, A.G.; Urbina, P.A.; Zapata, Z.M.N.; Rodríguez, M.C.; Lagunes, T.A. Bioactivity of tepa (Laureliopsis philippiana (Looser) Shodde) powder to Sitophilus zeamais Motschuslky control in laboratory. Chil. J. Agric. Res. 2012, 72, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, R.A.; Rosentrater, K.A.; Bern, C.J. Effects of Deterioration Parameters on Storage of Maize: An ASABE Meeting Presentation; Paper No. 131593351; Iowa State University: Kansas City, MO, USA, 2013. [Google Scholar]
- Mbata, G.N.; Ivey, C.; Shapiro-Ilan, D. The potential for using entomopathogenic nematodes and fungi in the management of the maize weevil, Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae). Biol. Control. 2018, 125, 39–43. [Google Scholar] [CrossRef]
- Bohinc, T.; Horvat, A.; Andric, G.; Prazic Golic, M.; Kljajic, P.; Trdan, S. Comparison of three different wood ashes and diatomaceous earth in controlling the maize weevil under laboratory conditions. J. Stored Prod. Res. 2018, 79, 1–8. [Google Scholar] [CrossRef]
- García-Lara, S.; Espinosa, C.C.; Bergvinson, D. Manual de Plagas en Granos Almacenados y Tecnologías Alternas Para su Manejo y Control; CIMMYT: Mexico City, Mexico, 2007. (In Spanish) [Google Scholar]
- Adebayo, O.J.; Omoloye, A.O.A. Rearing the maize weevil, Sitophilus zeamais, on an artificial maize–cassava diet. J. Insect Sci. 2012, 12, 69. [Google Scholar]
- Abdullahi, N.; Umar, I.; Tukur, Z.; Babura, S.R. Comparative efficacy of the bark and root powders of Acacia nilotica against maize weevil Sitophilus zeamais (Motsculsky) (Coleoptera: Curculionidae) in Kano State of Nigeria. Afr. J. Agric. Res. 2014, 9, 588–592. [Google Scholar]
- González, H.B.; Armstrong, P.R.; Maghirang, R.G. Simultaneous monitoring of stored grain with relative humidity, temperature, and carbon dioxide sensors. Appl. Eng. Agric. 2009, 25, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, J.; Maier, D.E. Aeration strategy simulations for wheat storage in the subtropical region of north India. Trans. ASABE 2011, 54, 1395–1405. [Google Scholar] [CrossRef]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. In Plant, Soil and Microbes; Hakeem, K., Akhtar, M., Abdullah, S., Eds.; Springer International: Cham, Switzerland, 2016; pp. 253–269. [Google Scholar]
- Hassaan, M.A.; Nemr, A.E. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lemperiere, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef]
- Bell, C. Fumigation in the 21st century. Crop Prot. 2000, 19, 563–569. [Google Scholar] [CrossRef]
- Negatu, B.; Kromhout, H.; Mekonnen, Y.; Vermeulen, R. Use of Chemical Pesticides in Ethiopia: A cross-sectional comparative study on Knowledge, Attitude and Practice of farmers and farm workers in three farming systems. Ann. Occup. Hyg. 2016, 60, 551–566. [Google Scholar] [CrossRef]
- Silva, G.; Lagunes, A.; Rodríguez, J.; Rodríguez, D. Insecticidas vegetales: Una vieja y nueva alternativa para el manejo de plagas. Manejo Integr. Plagas. Agroecol. 2002, 66, 4–12. (In Spanish) [Google Scholar]
- Tofel, K.H.; Kosma, P.; Stahler, M.; Adler, C.; Nukenine, E.N. Insecticidal products from Azadirachta indica and Plectranthus glandulosus growing in Cameroon for the protection of stored cowpea and maize against their major insect pests. Ind. Crop. Prod. 2017, 110, 58–64. [Google Scholar] [CrossRef]
- Arthur, F.H. Structural pest management for stored product insects. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 65–81. [Google Scholar]
- Athanassiou, C.G.; Arthur, F.H. Bacterial insecticides and inert material. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–98. [Google Scholar]
- Montesino, M. Insecticidas botánicos como alternativa para el manejo de plagas en sistemas agroforestales. Agric. Org. 2009, 1, 24–26. (In Spanish) [Google Scholar]
- Duplais, C.; Papon, N.; Courdavault, V. Tracking the Origin and Evolution of Plant Metabolites. Trends Plant Sci. 2020, 25, 1182–1184. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, A.A.; Werdin-González, J.O.; Sánchez-Chopa, C. Biological activity of Schinus molle on Triatoma infestans. Fitoterapia 2006, 77, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A Review of Bioinsecticidal Activity of Solanaceae Alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.R. Natural Products: The Secondary Metabolites; The Royal Society of Chemistry: Cambridge, UK, 2003; pp. 1–148. [Google Scholar]
- Kuete, V. Bioactivity of Plant Constituents against Vancomycin-Resistant Enterococci. In Fighting Multidrug Resistance with Herbal Extracts; Rai, M.K., Kon, K.V., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 23–30. [Google Scholar]
- Wink, M. Interference of alkaloids with neuroreceptors and ion channels. Stud. Nat. Prod. Chem. 2000, 21, 3–122. [Google Scholar]
- Adeyemi, M.M.H. The potential of secondary metabolites in plant material as deterrents against insect pests: A review. Afr. J. Pure Appl. Chem. 2010, 4, 243–246. [Google Scholar]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop. Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Rattan, R.S. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Wink, M. Evolution of secondary metabolites in legumes (Fabaceae). S. Afr. J. Bot. 2013, 89, 164–175. [Google Scholar] [CrossRef] [Green Version]
- Nenaah, G.E. Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Ind. Crop. Prod. 2014, 53, 252–260. [Google Scholar] [CrossRef]
- Teichert, I.; Nowrousian, M.; Pöggeler, S.; Kück, U. The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. Adv. Genet. 2014, 87, 199–244. [Google Scholar] [PubMed]
- Maazoun, A.M.; Hlel, T.B.; Hamdi, S.H.; Belhadj, F.; Jemâa, J.M.B.; Marzouki, M.N. Screening for insecticidal potential and acetylcholinesterase activity inhibition of Urginea maritima bulbs extract for the control of Sitophilus oryzae (L.). J. Asia-Pac. Entomol. 2017, 20, 752–760. [Google Scholar] [CrossRef]
- Rosado-Aguilar, J.A.; Arjona-Cambranes, K.; Torres-Acosta, J.F.J.; Rodríguez-Vivas, R.I.; Bolio-González, M.E.; Ortega-Pacheco, A.; Alzina-López, A.; Gutiérrez-Ruiz, E.J.; Gutiérrez-Blanco, E.; Aguilar-Caballero, A.J. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 2017, 238, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Zunino, M.P.; López, M.L.; Zygadlo, J.A. Medicinal plants of Argentina. Pharmacological properties and phytochemistry. In Advances in Phytochemisty; Imperato, F., Ed.; Research Singpost: Trivandrum, India, 2003; pp. 209–245. [Google Scholar]
- Viturro, C.; Bandoni, A.; Dellacassa, E.; Serafini, L.A.; Elder, H. Problemática Schinus en Latinoamérica. In Normalización de Productos Naturales Obtenidos de Especies de la Flora Aromática Latinoamericana: Proyecto CYTED IV.20E; Dellacassa, Ed.; EDIPUCRS: Porto Alegre, Brazil, 2010; pp. 205–280. [Google Scholar]
- Ruffa, M.J.; Ferraro, G.; Wagner, M.L.; Calcagno, M.L.; Campos, R.H.; Cavallaro, L. Cytotoxic effect of argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J. Ethnopharmacol. 2002, 79, 335–339. [Google Scholar] [CrossRef]
- Benzi, V.; Stefanazzi, N.; Ferrero, A.A. Biological activity of essential oils from leaves and fruits of pepper tree (Schinus molle L.) to control rice weevil (Sitophilus oryzae L.). Chil. J. Agric. Res. 2009, 69, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Chiffelle, I.; Huerta, A.; Sandoval, C.A.; Araya, J.E. Insecticide effect of leaf extracts from Schinus molle on larva of Gonipterus platensis. Rev. Fac. Nac. Agron. Medellín 2017, 70, 8263–8270. [Google Scholar]
- Bouchra, C.; Achouri, M.; Idrissi-Hassani, L.; Hmamouchi, M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers. Fr. J. Ethnopharmacol. 2003, 89, 165–169. [Google Scholar] [CrossRef]
- Ansari, N.D.; Hasanzadeh, N.; Bagher, M.R.; Ghasemi, A. Antibacterial Activity and Chemical Compositions of Chamaemelum nobile Essential Oil/Extracts against Pseudomonas tolaasii, the Causative Agent of Mushroom Brown Blotch. Annu. Biol. Res. 2012, 3, 2602–2608. [Google Scholar]
- Hernández-Cruz, J.; Luna-Cruz, A.; Loera-Alvarado, E.; Villanueva-Sánchez, E.; Landero-Valenzuela, N.; Zárate-Nicolás, B.H.; Diego-Nava, F.; Granados-Echegoyen, C.A. Effiiency of the Essential Oil of Porophyllum linaria (Asteraceae) a Mexican Endemic Plant Against Sitophilus zeamais (Coleoptera: Curculionidae). J. Insect Sci. 2019, 6, iez079. [Google Scholar] [CrossRef]
- Munyaneza, J.E. Zebra chip disease of potato: Biology, epidemiology, and management. Am. J. Potato Res. 2012, 89, 329–350. [Google Scholar] [CrossRef] [Green Version]
- Munyaneza, J.E.; Henne, D.C. Leafhopper and psyllid pests of potato. In Insect Pests of Potato: Global Perspectives on Biology and Management; Giordanengo, P., Vincent, C., Alyokhin, A., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 65–102. [Google Scholar]
- Haines, C.P. Insects and arachnids of tropical stored products: Their biology and identification. In A Training Manual, 2nd ed.; Haines, C.P., Ed.; Natal University Press: Pietermaritzburg, South Africa; Natural Resources Institute: Kent, UK, 1991. [Google Scholar]
- Akhtara, Y.; Murray, B.I.; Chi-Hoon, L.; Aang-Guei, L.; Hoi-Seon, L. Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Ind. Crop. Prod. 2012, 37, 536–541. [Google Scholar] [CrossRef]
- Lagunes, T.A.; Rodríguez, C. Búsqueda de Tecnología Apropiada Para el Combate de Plagas del Maíz Almacenado en Condiciones Rústicas; CONACYT/Colegio de Postgraduados: Texcoco, México, 1989; p. 150. (In Spanish) [Google Scholar]
- Oliveira, T.A.; Ronchi-Teles, B.; Fonseca, C.R.V.; Silva, S.L.R.; Santos, P.A.; Núñez, C.V. Insecticidal activity of Vitex cymosa (Lamiaceae) and Eschweilera pedicellata (Lecythidaceae) extracts against Sitophilus zeamais adults (Curculionidae). Emir. J. Food Agric. 2012, 24, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Fazolin, M.; Estrela, J.L.V.; Catani, V.; Alécio, M.; De Lima, M.S. Atividade inseticida do óleo essencial de Tanaecium nocturnum (Barb. Rodr.) Bur. and K. Shum (Bignoneaceae) sobre Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). Acta Amazon. 2007, 37, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Mazzonetto, F.; Vendramin, J.D. Efeito de pos de origem vegetal sobre Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) em feijao armazenado. Neotrop. Entomol. 2003, 31, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Fouad, H.A.; Faroni, L.R.D.; Ribeiro, R.C.; Tavares, W.D.S.; Petacci, F. Extraction and repellent activity of Lepidoploa aurea and Memora nodosa against stored grain and by product pests. Vie. Milieu. Life. Environ. 2012, 62, 11–15. [Google Scholar]
- Viteri-Jumbo, L.O.; Faroni, L.R.A.; Oliveira, E.E.; Pimentel, M.A.; Silva, G.N. Potential use of clove and cinnamon essential oils to control the bean weevil, Acanthoscelides obtectus Say, in small storage units. Ind. Crop. Prod. 2014, 56, 27–34. [Google Scholar] [CrossRef]
- Mazzonetto, F. Efecto de Genótipos de Feijoeiro e de pós de Origen Vegetal Sobre Zabrotes subfasciatus (Boh.) e Acanthoscelides obtectus (Say) (Col.: Bruchidae). Piracicaba, 134. Ph.D. Thesis, Universidad de Sao Paulo, São Paulo, Brazil, 2002. [Google Scholar]
- Arivoli, S.; Tennyson, S. Ovicidal activity of plant extract against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Bull. Environ. Pharmacol. Life Sci. 2013, 2, 140–145. [Google Scholar]
- Elumalai, K.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.J.; Pandiyan, P.M.; Baabu, K.; Krishnappa, K.; Govindarajan, M. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J. Biol. Sci. 2020, 27, 2917–2928. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Abasi, M.A.; Abid, M.; Mozuratis, R.; Alwahibi, S.M.; Elshikh, S.M. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arab. J. Chem. 2022, 15, 103482. [Google Scholar] [CrossRef]
- Diemer, N.; Staudacher, P.; Atuhaire, A.; Fuhrimann, S.; Inauen, J. Smallholder farmers’ information behavior differs for organic versus conventional pest management strategies: A qualitative study in Uganda. J. Clean. Prod. 2020, 257, 120. [Google Scholar] [CrossRef]
- Doleski, M.P.S.; Ferreira, C.C.H.; Calil, B.J.; Palermo, M.M. Chemical composition of the Schinus molle L. essential oil and their biological activities. Rev. Cuba. Farm. 2015, 49, 132–143. [Google Scholar]
- Machado, D.C.; Rama, V.; Rehman, U.J.; Maia, S.N.L.H.B.; Meneghetti, K.E.; Almeida, P.V.; Silva, Z.R.; Farago, V.P.; Khan, A.I. Schinus molle: Anatomy of leaves and stems, chemical composition and insecticidal activities of volatile oil against bed bug (Cimex lectularius). Braz. J. Pharmacogn. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Yang, L.; Kui-Shan, W.; Xiao, R.; Ying-Xian, Z.; Feng, W.; Qiang, W. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayasundara, N.D.B.; Arampath, P. Effect of variety, location & maturity stage at harvesting, on essential oil chemical composition, and weight yield of Zingiber officinale roscoe grown in Sri Lanka. Heliyon 2021, 7, 06560. [Google Scholar]
- Huerta, A.; Chiffelle, I.; Puga, K.; Azúa, F.; Araya, J. Toxicity and repellence of aqueous and ethanolic extracts from Schinus molle on elm leaf beetle Xanthogaleruca luteola. Crop Prot. 2010, 29, 1118–1123. [Google Scholar] [CrossRef]
- López, A.; Castro, S.; Andina, J.M.; Ures, X.; Munguía, B.; Llabot, M.J.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal activity of microencapsulated Schinus molle essential oil. Ind. Crop. Prod. 2014, 53, 209–216. [Google Scholar] [CrossRef]
- Hussein, H.S.; Tawfeek, M.E.; Abdelgaleil, S.A.M. Chemical composition, aphicidal and antiacetilcholinesterase activities of essential oils against Aphis nerii Boyer de Fonscolombe. J. Asia-Pac. Entomol. 2021, 24, 259–265. [Google Scholar] [CrossRef]
- Zahran, H.E.D.; Abou-Taleb, H.K.; Abdegaleil, S.A.M. Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. J. Asia-Pac. Entomol. 2017, 20, 133–139. [Google Scholar] [CrossRef]
- De Batista, C.L.; Cid, P.Y.; De Almeida, P.A.; Prudencio, E.R.; Riger, J.C.; De Souza, A.A.M.; Coumendouros, K.; Chaves, A.S.D. In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 2016, 143, 627–638. [Google Scholar] [CrossRef]
- Arceo-Medina, G.N.; Rosado-Aguilar, J.A.; Rodríguez-Vivas, R.I.; Borgez-Argaez, R. Sinergystic and antagonistic action of fatty acids: Sulphides and stilbenes against acaricide-resistant Ripicephalus microplus ticks. Vet. Parasitol. 2016, 228, 121–125. [Google Scholar] [CrossRef]
- Feng, Y.X.; Wang, Y.; Geng, Z.F.; Zhang, D.; Almaz, B.; Du, S.S. Contact toxicity and repellent efficacy of valerianaceae spp. to three stored-product insects and synergistic interactions between two major compounds camphene and bornyl acetato. Ecotoxicol. Environ. Saf. 2020, 190, 110106. [Google Scholar] [CrossRef]
- Ávila, M.M.C.; Cuca, S.L.E.; Cerón, S.J.A. Chemical composition and insecticidal properties of essential oils of Piper septuplinervium and P. subtomentosum (Piperaceae). Nat. Prod. Commun. 2014, 9, 1527–1530. [Google Scholar]
- Xiao, G.; Xiaofei, S.; Bing, L.; Xu, Z.Z.; Hao, W.; Jiyu, Z. Acaricidal activities of the essential oil from Rhododendron nivale Hook. f. and its main compound, cadinene against Psoroptes cuniculi. Vet. Parasitol. 2017, 236, 51–54. [Google Scholar]
- Shujie, M.; Ran, J.; Menglei, G.; Kaitao, Q.; Lihui, Z. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind. Crop. Prod. 2020, 150, 112403. [Google Scholar]
- De-Carvalho, C.K.N.; Costa, J.L.M.; Fernandes, L.D.; Marques, C.K.; Souza, D.E.; Moreira, D.I.; Sérgio, T.M.; Oiram, F.F.; Cardoso, D.R.; Joseph, M.S. Acaricidal activity of cashew nut shell liquid associated with essential oils from Cordia verbenacea and Psidium guajava on Rhipicephalus microplus. J. Essent. Oil Res. 2019, 31, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Garrido, A.; Castañer, M.; Del Busto, T.; Malagon, J. Toxicidad de diversos plaguicidas sobre los estados inmaduros de Aleurothrixus fioccosus (Mask.) e incidencia sobre el insencto útil Cales noacki How. Bol. San Veg. Plagas 1990, 16, 173–181. (In Spanish) [Google Scholar]
- Yeom, H.-J.; Kang, J.S.; Kim, G.-H.; Park, I.-K. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J. Agric. Food Chem. 2012, 60, 7194–7203. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crop. Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Giordani, C.; Cappellacci, L.; Petrelli, R.; Canale, A. Insecticidal activity of two essential oils used in perfumery (ylang ylang and frankincense). Nat. Prod. Res. 2020, 35, 4746–4752. [Google Scholar] [CrossRef]
- Wen, Z.; Zeng, R.S.; Niu, G.; Berenbaum, M.R.; Schuler, M.A. Ecological significance of induction of broad-substrate cytochrome P450s by natural and synthetic inducers in Helicoverpa zea. J. Chem. Ecol. 2009, 35, 183–189. [Google Scholar] [CrossRef]
- Tak, J.H.; Jovel, E.; Isman, M.B. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest. Manag. Sci. 2016, 72, 474–480. [Google Scholar] [CrossRef] [PubMed]
Peak | Retention Time | Compound a | Peak Area (%) b | KI c | KI d |
---|---|---|---|---|---|
1 | 5.85 | Tricyclene | 4.19 | 919 | 921 |
2 | 6.06 | 1R-α-Pinene | 15.52 | 929 | ND |
3 | 6.34 | Camphene | 14.00 | 930 | 933 |
4 | 6.76 | β-Pinene | 8.17 | 957 | 964 |
5 | 6.91 | β-Myrcene | 11.54 | 984 | 981 |
6 | 7.23 | α-Phellandrene | 7.26 | 1000 | 1002 |
7 | 7.62 | o-Cymene | 29.04 | 1017 | ND |
8 | 7.92 | β-Phellandrene | 5.39 | 1028 | 1026 |
9 | 8.10 | γ-Terpinene | 1.01 | 1028 | 1030 |
10 | 8.54 | p-Cymenene | 0.36 | 1078 | 1078 |
11 | 8.64 | Perillen | 0.30 | 1083 | ND |
12 | 8.83 | 2,6-dimethyleneoct-7-en-3-one | 0.13 | 1117 | ND |
13 | 9.77 | Biisobutenyl | 0.40 | 1132 | ND |
14 | 9.90 | L-4-terpineol | 0.24 | 1175 | ND |
15 | 10.04 | Crypton | 0.27 | 1184 | 1187 |
16 | 10.83 | Cuminal | 0.04 | 1235 | 1226 |
17 | 11.38 | L-bornyl acetate | 0.40 | 1280 | ND |
18 | 12.69 | α-Cubebene | 0.11 | 1348 | 1354 |
19 | 12.88 | β-Elemene | 0.11 | 1394 | 1391 |
20 | 13.16 | α-Gurjunene | 0.17 | 1409 | 1401 |
21 | 13.33 | Caryophyllene | 0.38 | 1427 | 1444 |
22 | 13.78 | Humulene | 0.12 | 1455 | 1477 |
23 | 14.30 | β-Gurjenene | 0.18 | 1439 | 1440 |
24 | 14.58 | δ-Cadinene | 0.41 | 1524 | 1541 |
Total % | 99.74 |
Concentration (ppm) | Nymph Mortality at 24 h | Nymph Mortality at 48 h | ||
---|---|---|---|---|
Fourth-Instar | Fifth-Instar | Fourth-Instar | Fifth-Instar | |
800 | 90.00 ± 4.08 b | 70.00 ± 4.08 b | 97.50 ± 2.89 a | 85.00 ± 4.08 b |
600 | 87.50 ± 2.89 b | 53.75 ± 4.79 c | 93.75 ± 2.50 a | 60.00 ± 4.08 c |
400 | 66.25 ± 4.78 c | 45.00 ± 4.08 d | 72.50 ± 5.00 b | 48.75 ± 4.79 d |
200 | 48.75 ± 4.79 d | 43.75 ± 4.79 d | 55.00 ± 7.07 c | 47.5 ± 5.00 d |
100 | 21.25 ± 4.79 e | 11.25 ± 2.50 e | 22.50 ± 6.45 d | 12.50 ± 2.89 e |
50 | 7.50 ± 2.89 f | 5.00 ± 4.08 e,f | 8.75 ± 2.50 e | 6.25 ± 4.79 e,f |
Control (-) | 0.00 ± 0.00 f | 0.00 ± 0.00 f | 0.00 ± 0.00 e | 0.00 ± 0.00 f |
CONFIDOR 350 SC® | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a |
Stage Exposure/Time | LC50 (CI) | LC90 (CI) | Slope (SE) | X2 (df) | z-Value | p-Value |
---|---|---|---|---|---|---|
24 h | ||||||
fourth-instar | 329.43 ± 16.96 (296.69–363.83) | 662.34 ± 31.08 (607.58–731.39) | −1.26 (0.09) | 35.59 (5) | −12.71 | 0.0001 |
fifth-instar | 523.81 ± 27.69 (473.31–583.95) | 1029.90 ± 63.01 (923.14–1177.11) | −1.32 (0.10) | 41.97 (5) | −13.10 | 0.0001 |
48 h | ||||||
fourth-instar | 273.41 ± 14.33 (245.86–302.62) | 534.67 ± 25.63 (489.54–591.68) | −1.34 (0.10) | 29.30 (5) | −12.71 | 0.0001 |
fifth-instar | 442.67 ± 21.71 (401.89–88.12) | 864.29 ± 45.09 (786.27–966.77) | −1.34 (0.10) | 40.62 (5) | −13.25 | 0.0001 |
Concentration (ppm) | Accumulated Mortality (%)/Day | |||
---|---|---|---|---|
1 | 5 | 10 | 15 | |
800 | 0.00 ± 0.00 b | 50.00 ± 10.00 b | 66.67 ± 5.72 b | 80.00 ± 10.00 a,b |
600 | 0.00 ± 0.00 b | 33.33 ± 5.77 b,c | 53.33 ± 5.75 b,c | 63.33 ± 11.55 b,c |
400 | 0.00 ± 0.00 b | 33.33 ± 5.77 b,c | 46.67 ± 5.77 c | 56.67 ± 5.77 b,c,d |
200 | 0.00 ± 0.00 b | 26.67 ± 5.77 c | 40.00 ± 4.79 c | 53.33 ± 5.77 b,c,d |
100 | 0.00 ± 0.00 b | 23.33 ± 15.28 c | 36.67 ± 15.28 c,d | 46.70 ± 25.20 c,d |
50 | 0.00 ± 0.00 b | 13.33 ± 5.77 c,d | 20.00 ± 3.33 d | 30.00 ± 10.00 d,e |
Control (-) | 0.00 ± 0.00 b | 0.00 ± 0.00 d | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
K-Obiol 2.5® | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a | 100.00 ± 0.00 a |
Day | LC50 (CI) | LC90 (CI) | Slope (SE) | X2 (df) | z-Value | p-Value |
---|---|---|---|---|---|---|
1 | ND | ND | - | - | - | - |
5 | 781.49 ± 116.35 (611.35–1164.71) | 1641.29 ± 300.86 (1230.19–2701.71) | −1.16 (0.15) | 7.44 (5) | −7.41 | 0.190 |
10 | 502.50 ± 60.70 (398.26 -659.28) | 1220.58 ± 173.63 (967.21–1748.29) | −0.89 (0.14) | 11.77 (5) | −6.22 | 0.038 |
15 | 343.25 ± 46.46 (251.56–445.21) | 986.96 ± 125.86 (797.92–1349.80) | −0.68 (0.13) | 16.50 (5) | −4.95 | 0.006 |
Concentration (ppm) | Maize Weevils | Selection Index | Range | |
---|---|---|---|---|
Treated Grain | Untreated Grain | |||
800 | 18.33 ± 5.77 b,c | 81.67 ± 5.77 a,b | 0.37 ± 0.12 b,c | +++ |
600 | 21.67 ± 7.64 b,c | 78.33 ± 7.64 a,b | 0.43 ± 0.15 b,c | +++ |
400 | 23.33 ± 5.77 b | 76.67 ± 5.77 b | 0.47 ± 0.12 b | +++ |
200 | 35.00 ± 5.00 a,b | 65.00 ± 15.00 b,c | 0.70 ± 0.10 a,b | ++ |
100 | 35.00 ± 15.00 a,b | 65.00 ± 15.00 b,c | 0.70 ± 0.30 a,b | ++ |
50 | 53.33 ± 7.64 a | 46.67 ± 7.64 c | 1.07 ± 0.15 a | − |
Control (-) | 50.00 ± 10.00 a | 50.00 ± 10.00 c | 1.00 ± 0.20 a | o |
DEET | 0.00 ± 0.00 c | 100.00 ± 0.00 a | 0.00 ± 0.00 c | ++++ |
± SE | 28.75 ± 3.47 | 71.25 ± 3.47 | ||
t-test | 8.6501 | |||
df | 46 | |||
t-critical | 2.0128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landero-Valenzuela, N.; Alonso-Hernández, N.; Lara-Viveros, F.; Gómez-Domínguez, N.S.; Juárez-Pelcastre, J.; Aguado-Rodríguez, J.; Luna-Cruz, A.; Lagunez-Rivera, L.; Aguilar-Pérez, L.A.; Hinojosa-Garro, D.; et al. Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae). Agriculture 2022, 12, 554. https://doi.org/10.3390/agriculture12040554
Landero-Valenzuela N, Alonso-Hernández N, Lara-Viveros F, Gómez-Domínguez NS, Juárez-Pelcastre J, Aguado-Rodríguez J, Luna-Cruz A, Lagunez-Rivera L, Aguilar-Pérez LA, Hinojosa-Garro D, et al. Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae). Agriculture. 2022; 12(4):554. https://doi.org/10.3390/agriculture12040554
Chicago/Turabian StyleLandero-Valenzuela, Nadia, Nancy Alonso-Hernández, Francisco Lara-Viveros, Nadia S. Gómez-Domínguez, Jonathan Juárez-Pelcastre, Javier Aguado-Rodríguez, Alfonso Luna-Cruz, Luicita Lagunez-Rivera, Luis Alfonso Aguilar-Pérez, Demián Hinojosa-Garro, and et al. 2022. "Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae)" Agriculture 12, no. 4: 554. https://doi.org/10.3390/agriculture12040554
APA StyleLandero-Valenzuela, N., Alonso-Hernández, N., Lara-Viveros, F., Gómez-Domínguez, N. S., Juárez-Pelcastre, J., Aguado-Rodríguez, J., Luna-Cruz, A., Lagunez-Rivera, L., Aguilar-Pérez, L. A., Hinojosa-Garro, D., & Granados-Echegoyen, C. (2022). Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae). Agriculture, 12(4), 554. https://doi.org/10.3390/agriculture12040554