Impact of Tillage and Fertilization on CO2 Emission from Soil under Maize Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Experimental Treatments
2.3. Soil CO2 Emission Measurements
2.4. Soil Sampling Analyses
2.5. Corn Cob Sampling
2.6. Data Analysis
3. Results
3.1. Soil Properties
3.2. Soil CO2 Emission
3.3. Corn Production
4. Discussion
4.1. Tillage and Fertilization Effects on CO2 Emissions
4.2. Temporal Variation of CO2 Emissions
4.3. Corn Production
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Q.; Gong, J.; Zhai, Z.; Pan, Y.; Liu, M.; Xu, S.; Wang, Y.; Yang, L.; Taoge-Tao, B. The responses of soil respiration to nitrogen addition in a temperate grassland in northern china. Sci. Total Environ. 2016, 569–570, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H.; Zhang, Q.; Shao, H.; Gao, C.; Zhang, X. Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China. Soil Tillage Res. 2019, 195, 104361. [Google Scholar] [CrossRef]
- FAO. Organic Farming and Climate Change Mitigation. A Report of the Round Table on Organic Agriculture and Climate Change; FAO: Rome, Italy, 2011. [Google Scholar]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Niggli, U.; Fließbach, A.; Hepperly, P.; Scialabba, N. Low Greenhouse Gas Agriculture: Mitigation and Adaptation Potential of Sustainable Farming Systems; FAO: Rome, Italy, 2009; Rev. 2. [Google Scholar]
- Buragienė, S.; Šarauskis, E.; Romaneckas, K.; Adamavičienė, A.; Kriaučiūnienė, Z.; Avižienytė, D.; Marozas, V.; Naujokienė, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Sustainable Development, and Efforts to Eradicate Poverty in Press; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; IPCC, World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- IPCC; Stocker, T.F.; Qin, D.; Gian-Kasper, P.; Tignor, M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; et al. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Piesse, J.; Thirtle, C. Agricultural R&D, technology and productivity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3035–3047. [Google Scholar]
- Gathorne-Hardy, A. The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use. Ambio 2016, 45, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, D.R. Dirt: The Erosion of Civilizations; University of California Press: Berkeley, CA, USA, 2012. [Google Scholar]
- Krištof, K.; Šima, T.; Nozdrovický, L.; Findura, P. The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agron. Res. 2014, 12, 115–120. [Google Scholar]
- Lu, X.; Lu, X.; Khan, S.; Xiaoxia, T.; Liao, W.; Liao, Y. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Res. 2015, 54, 38–48. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review. Environ. Evid. 2016, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rakotovao, N.H.; Razafimbelo, T.M.; Rakotosamimanana, S.; Randrianasolo, Z.; Randriamalala, J.R.; Albrechte, A. Carbon footprint of smallholder farms in Central Madagascar: The integration of agroecological practices. J. Clean. Prod. 2017, 140, 1165–1175. [Google Scholar] [CrossRef]
- Mehra, P.; Baker, J.; Sojka, R.E.; Bolan, N.; Desbiolles, J.; Kirkham, M.B.; Ross, C.; Gupta, R. A review of tillage practices and their potential to impact the soil carbon dynamics. Adv. Agron. 2018, 150, 185–230. [Google Scholar]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Skowrońska, M.; Szczepaniak, J. Impact of reduced tillage on CO2 emission from soil under maize cultivation. Soil Tillage Res. 2018, 180, 21–28. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Calvo, A.; Bruun, S. Comparis on of the environmental performance of light mechanizati on and animal traction using a modular LCA approach. J. Clean. Prod. 2014, 64, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Heinberg, R.; Bomford, M. La transición alimentaria y agrícola. Mientras Tanto 2012, 117, 123–158. [Google Scholar]
- Flores-Cruz1, L.A.; García-Salazar, J.A.; Mora-Flores, J.S.; Pérez-Soto, F. Maize production (Zea mays L.) in the state of Puebla: Using spatial equilibrium approach to identify the most competitive producing zones. Agric. Soc. Y Desarro. 2014, 11, 2. [Google Scholar]
- Fuller, R.J.; Aye, L. Human and animal power—The forgotten renewables. Renew. Energy 2012, 48, 326–332. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Liu, X.J.; Zhang, F.S. Nitrogen fertilizer induced greenhouse gas emissions in China. Curr. Opin. Environ. Sustain. 2011, 3, 407–413. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; 104p. [Google Scholar]
- Gong, W.; Yan, X.Y.; Wang, J.Y. The effect of chemical fertilizer on soil organic carbon renewal and CO2 emission-a pot experiment with maize. Plant Soil 2012, 353, 85–94. [Google Scholar] [CrossRef]
- Zornoza, R.; Rosales, R.M.; Acosta, J.A.; Rosa, J.M.D.L.; Arcenegui, V.; Faz, Á.; Pérez-Pastor, A. Efficient irrigation management can contribute to reduce soil CO2, emissions in agriculture. Geoderma 2016, 263, 70–77. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Singh, A.K. Changes in ecosystem carbon pool and soil CO2, flux following post-mine reclamation in dry tropical environment, India. Sci. Total Environ. 2017, 583, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Liu, C.; Zhang, B.; Dong, J. Effects of inorganic and organic nitrogen additions on CO2 emissions in the coastal wetlands of the Yellow River Delta, China. Atmos. Environ. 2018, 185, 159–167. [Google Scholar] [CrossRef]
- Starkey, P. Livestock for Traction: World Trends, Key Issues and Policy Implications; Food and Agriculture Organisation: Rome, Italy, 2010. [Google Scholar]
- Schramski, J.R.; Jacobsen, K.L.; Smith, T.W.; Williams, M.A.; Thompson, T.M. Energy as a potential systems-level indicator of sustainability in organic agriculture: Case study model of a diversified, organic vegetable production system. Ecol. Model. 2013, 267, 102–114. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema de Clasificación Climática de Koeppen para Adaptarlo a las Condiciones de la República Mexicana; Offset Larios: Mexico City, Mexico, 1981. [Google Scholar]
- Instituto Nacional de Estadística, Geografía e Informática (INEGI). Cuaderno Estadístico Municipal; INEGI: Mexico City, Mexico, 1997; p. 6.
- Sugihara, S.; Funakawa, S.; Kilasara, M.; Kosaki, T. Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biol. Biochem. 2012, 46, 1–9. [Google Scholar] [CrossRef]
- Nannipieri, P.; Kassem, A. Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995. [Google Scholar]
- Albíter-Pineda, J.F.; Vaca, R.; del Aguila, P.; Yánez-Ocampo, G.; Lugo, J. Flujo de CO2 y su relación con propiedades bioquímicas en cultivos hortícolas en invernadero. Ecosistemas Y Recur. Agropecu. 2020, 7, e2548. [Google Scholar]
- Norma Oficial Mexicana. NOM-021-RECNAT-2001 Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis; Secretaria de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2000.
- Salamanca-Fresno, C.; María-Auxiliadora, S.; Testi, L.; Gómez-Macpherson, H. Effects of conservation tillage, controlled traffic and regulated deficit irrigation on soil CO2 emissions in a maize-based system in Mediterranean conditions. Sci. Total Environ. 2022, 813, 152454. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.; Lin, S.; Hatano, R.; Feng, M.; Lu, L.; Ahamadou, B.; Du, L. CO2 emission in a subtropical red paddy soil as affected by straw and N fertilizer applications: A case study in Southern China. Agric. Ecosyst. Environ. 2009, 131, 292–302. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Guzman, J.G. Effects of tillage and nitrogen rate on decomposition of transgenic Bt and near-isogenic non-Bt maize residue. Soil Tillage Res. 2013, 129, 32–39. [Google Scholar] [CrossRef]
- Pareja-Sáncheza, E.; Cantero-Martíneza, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and nitrogen fertilization in irrigated maize: Key practices to reduce soil CO2 and CH4 emissions. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Arrúe, J.L.; Álvaro-Fuentes, J. Tillage and irrigation system effects on soil carbon dioxide (CO2) and methane (CH4) emissions in a maize monoculture under Mediterranean conditions. Soil Tillage Res. 2020, 196, 104488. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Jans, W.; Cor, M.J.; Kruijt, B.; Elbers, J.A.; Barendse, S.; Eddy, J. Moors Carbon exchange of a maize (Zea mays L.) crop: Influence of phenology. Agric. Ecosyst. Environ. 2010, 139, 316–324. [Google Scholar] [CrossRef]
- Dhadli, H.S.; Brar, B.S.; Black, T.A. Influence of crop growth and weather variables on soil CO2 emissions in a maize-wheat cropping system. Agric. Res. J. 2015, 52, 28–34. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, L.; Ouyang, Z.; Li, B.; Xu, Y.; Wu, S.; Gregorich, E. Effects of plant-derived dissolved organic matter (DOM) on soil CO2, and N2O emissions and soil carbon and nitrogen sequestrations. Agric. Ecosyst. Environ. 2015, 96, 122–130. [Google Scholar] [CrossRef]
- Leifeld, J.; Angers, D.A.; Chenu, C.; Fuhrer, J.; Kätterer, T.; Powlson, D.S. Organic farming gives no climate change benefit through soil carbon sequestration. Proc. Natl. Acad. Sci. USA 2013, 110, E984. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Yan, X.; Wang, J. The effect of chemical fertilizer application on carbon input and export in soil—a pot experiment with wheat using natural 13C abundance method. Geoderma 2012, 189–190, 170–175. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.G.; Feng, M.L.; Lin, S.; Malghani, S.; Ali, I.M. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration indifferent land uses: A case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 2010, 137, 294–307. [Google Scholar] [CrossRef]
- Ding, W.X.; Yu, H.Y.; Cai, Z.C.; Han, F.X.; Xu, Z.H. Responses of soil respiration to N fertilization in a loamy soil under maize cultivation. Geoderma 2010, 155, 381–389. [Google Scholar] [CrossRef]
- Wenyi, D.; Enke, L.; Jianbo, W.; Changrong, Y.; Juan, L.; Yanqing, Z. Impact of tillage management on the short- and long-term soil carbon dioxide emissions in the dryland of Loess Plateau in China. Geoderma 2007, 307, 38–45. [Google Scholar]
- Kim, Y.; Kodama, Y.; Fochesatto, G.J. Environmental factors regulating winter CO2 flux in snow-covered boreal forest soil, interior Alaska. Biogeosci. Discuss 2019, 9, 1129–1159. [Google Scholar]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; Lützow, M.; Marin-Spiotta, E.; Wesemael, B.V.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India. Geoderma 2015, 237–238, 149–158. [Google Scholar] [CrossRef]
- Bharali, A.; Baruah, K.K.; Bhattacharyya, P.; Gorh, D. Integrated nutrient management in wheat grown in a northeast India soil: Impacts on soil organic carbon fractions in relation to grain yield. Soil Tillage Res. 2017, 168, 81–91. [Google Scholar] [CrossRef]
- McNunn, G.; Karlen, D.L.; Salas, W.; Rice, C.W.; Mueller, S.; Muth, D., Jr.; Seale, J.W. Climate smart agriculture opportunities for mitigating soil green ho use gas emissions across the U.S. Corn-Belt. J. Clean. Prod. 2020, 268, 122240. [Google Scholar] [CrossRef]
- Dejie, K.; Liu, N.; Ren, C.; Li, H.; Wang, W.; Li, N.; Ren, G.; Feng, Y.; Yang, G. Effect of Nitrogen Fertilizer on Soil CO2 Emission Depends on Crop Rotation Strategy. Sustainability 2020, 12, 5271. [Google Scholar]
- Hafiz, M.H.; Wajid, F.; Farhat, A.; Fahad, S.; Shafqat, S.; Wajid, N.; Hafiz, F.B. Maize plant nitrogen uptake dynamics at limited irrigation water and nitrogen. Environ. Sci. Pollut. Res. 2016, 24, 2549–2557. [Google Scholar]
- Aziz, K.; Daniel, K.Y.T.; Muhammad, Z.A.; Honghai, L.; Shahbaz, A.T.; Mir, A.; Fahad, S. Nitrogen fertility and abiotic stresses management in cotton crop: A review. Environ. Sci. Pollut. Res. 2017, 24, 14551–14566. [Google Scholar]
- SHCP (Secretaría de Hacienda y Crédito Público). Financiera Nacional de Desarrollo Agropecuario, Rural, Forestal y Pesquero (2014), “Panorama del Maíz”. Available online: http://www.financierarural.gob.mx/informacionsectorrural/Panoramas/Panorama%20Ma%C3%ADz%20%28may%202014%29.pdf> (accessed on 10 November 2021).
Farming Operation | Date |
---|---|
First tillage | 10 Mar |
Maize sowing | 2 April |
First fertilization | 20 May |
Second tillage | 7 June |
Second fertilization | 14 July |
Herbicide application | 1 August |
Harvest | 10 November |
Plant cut | 5 December |
Treatments | Texture | BD (g cm3) | pH | EC (dsm−1) | OM (%) |
---|---|---|---|---|---|
TCT | Clay loam | 1.17 ± 0.10 a | 5.24 ± 0.24 a | 0.21 ± 0.01 a | 1.59 ± 0.15 a |
TCH | 1.08 ± 0.60 a | 5.02 ± 0.23 a | 0.27 ± 0.03 ab | 1.43 ± 0.19 a | |
THM | 1.22 ± 0.07 a | 5.14 ± 0.11 a | 0.41 ± 0.05 c | 1.70 ± 0.10 a | |
TCM | 1.22 ± 0.07 a | 5.06 ± 0.11 a | 0.30 ± 0.02 b | 1.69 ± 0.19 a | |
ACT | Clay loam | 1.13 ± 0.04 a | 5.28 ± 0.30 a | 0.24 ± 0.01 ab | 1.54 ± 0.15 a |
ACH | 1.03 ± 0.04 a | 5.05 ± 0.08 a | 0.29 ± 0.05 ab | 1.70 ± 0.10 a | |
AHM | 1.04 ± 0.18 a | 5.01 ± 0.18 a | 0.31 ± 0.05 b | 1.69 ± 0.19 a | |
ACM | 1.08 ± 0.07 a | 5.02 ± 0.07 a | 0.28 ± 0.01 ab | 1.64 ± 0.12 a |
1st Tillage | Sowing | 1st Fertilizer | 2nd Tillage | 2nd Fertilizer | Herbicide | Harvest | Plant Cut | |
---|---|---|---|---|---|---|---|---|
Tillage (T) | 0.53 | 0.41 | 2.80 | 0.62 | 13.57 ** | 39.78 ** | 2.69 | 39.68 ** |
Fertilization (F) | 1.80 | 2.64 | 8.19 ** | 33.67 ** | 145.65 ** | 5.70 * | 3.80 * | 6.10 ** |
T × F | 0.08 | 0.49 | 0.53 | 1.85 | 5.31 * | 1.46 | 0.37 | 1.54 |
Treatments | 1st Fertilizer | 2nd Tillage | 2nd Fertilizer |
---|---|---|---|
TCT | 6021.62 ± 302.41 ab | 7697.30 ± 211.43 c | 8821.62 ± 454.50 c |
TCH | 6583.79 ± 313.79 a | 9372.97 ± 456.43 a | 12,205.40 ± 233.75 ab |
THM | 6227.03 ± 405.22 ab | 7989.19 ± 550.45 bc | 12,097.30 ± 922.41 ab |
TCM | 6605.41 ± 149.99 a | 8951.35 ± 418.00 ab | 12,702.70 ± 380.31 a |
ACT | 5729.73 ± 275.62 b | 7297.30 ± 354.45 c | 7091.89 ± 196.39 d |
ACH | 6569.37 ± 140.95 ab | 8908.11 ± 320.70 ab | 12,227.00 ± 593.86 ab |
AHM | 6172.97 ± 403.42 ab | 8118.92 ± 549.12 c | 11,221.60 ± 745.67 b |
ACM | 6248.65 ± 533.53 a | 9246.85 ± 541.95 a | 12,655.90 ± 588.64 a |
Treatments | Accumulated Soil (CO2 m−2 h−1) |
---|---|
TCT | 263,243.24 ± 906.11 cd |
TCH | 290,324.32 ± 958.91 a |
THM | 272,810.81 ± 2818.24 bc |
TCM | 290,342.34 ± 662.44 a |
ACT | 250,810.81 ± 831.27 d |
ACH | 287,351.35 ± 885.23 ab |
AHM | 268,108.11 ± 2860.27 c |
ACM | 291,819.82 ± 1248.74 a |
Treatments | Number of Ears | Weight with Cob (ton/ha) | Weight without Cob (ton/ha) |
---|---|---|---|
TCT | 30,000.00 ± 5142.42 cd | 3.11 ± 0.67 bc | 2.57 ± 0.41 b |
TCH | 37,733.30 ± 7595.32 ab | 4.40 ± 0.91 a | 3.95 ± 0.81 a |
THM | 35,866.70 ± 2641.55 bc | 3.84 ± 0.35 ab | 3.45 ± 0.34 a |
TCM | 33,333.30 ± 3972.12 bc | 3.86 ± 0.80 ab | 3.55 ± 0.75 a |
ACT | 27,600.00 ± 1211.06 d | 2.29 ± 0.25 c | 2.26 ± 0.37 b |
ACH | 42,400.00 ± 11,240.8 a | 4.41 ± 0.88 a | 3.93 ± 0.83 a |
AHM | 39,466.07 ± 3870.12 ab | 3.86 ± 0.55 ab | 3.47 ± 0.49 a |
ACM | 42,000.00 ± 4807.40 a | 4.36 ± 0.61 a | 3.90 ± 0.55 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Alcántara, L.; Vaca, R.; del Águila, P.; de la Portilla-López, N.; Yáñez-Ocampo, G.; Sánchez-Paz, L.A.; Lugo, J.A. Impact of Tillage and Fertilization on CO2 Emission from Soil under Maize Cultivation. Agriculture 2022, 12, 555. https://doi.org/10.3390/agriculture12040555
Salinas-Alcántara L, Vaca R, del Águila P, de la Portilla-López N, Yáñez-Ocampo G, Sánchez-Paz LA, Lugo JA. Impact of Tillage and Fertilization on CO2 Emission from Soil under Maize Cultivation. Agriculture. 2022; 12(4):555. https://doi.org/10.3390/agriculture12040555
Chicago/Turabian StyleSalinas-Alcántara, Liliana, Rocio Vaca, Pedro del Águila, Nadia de la Portilla-López, Gustavo Yáñez-Ocampo, Laura A. Sánchez-Paz, and Jorge A. Lugo. 2022. "Impact of Tillage and Fertilization on CO2 Emission from Soil under Maize Cultivation" Agriculture 12, no. 4: 555. https://doi.org/10.3390/agriculture12040555
APA StyleSalinas-Alcántara, L., Vaca, R., del Águila, P., de la Portilla-López, N., Yáñez-Ocampo, G., Sánchez-Paz, L. A., & Lugo, J. A. (2022). Impact of Tillage and Fertilization on CO2 Emission from Soil under Maize Cultivation. Agriculture, 12(4), 555. https://doi.org/10.3390/agriculture12040555