Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Specification and Experimental Design
2.2. Fertilization and Management Practices
2.3. Estimation of Yield and Fe Concentration
2.4. Iron (Fe) Use Efficiency Indices and Economic Analysis
2.5. Statistical Analysis
3. Results
3.1. Impact of Foliar Application of FeSO4·7H2O on Yield
3.2. Impact of Foliar Application of FeSO4·7H2O on Fe Concentration
3.3. Impact of Foliar Application of FeSO4·7H2O on Fe Uptake
3.4. Impact of Foliar Application of FeSO4·7H2O on Efficiency Indices and Economic Outcomes
4. Discussion
4.1. Impact of Foliar Application of FeSO4·7H2O on Yield
4.2. Impact of Foliar Application of FeSO4·7H2O on Fe Concentration
4.3. Impact of Foliar Application of FeSO4·7H2O on Fe Uptake
4.4. Impact of Foliar Application of FeSO4·7H2O on Efficiency Indices and Economic Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manjeru, P.; Van Biljon, A.; Labuschagne, M. The development and release of maize fortified with provitamin A carotenoids in developing countries. Crit. Rev. Food Sci. Nutr. 2019, 59, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Galani, Y.J.H.; Orfila, C.; Gong, Y.Y. A review of micronutrient deficiencies and analysis of maize contribution to nutrient requirements of women and children in Eastern and Southern Africa. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef]
- Cappellini, M.K.; Musallam, K.M.; Taher, A.T. Iron deficiency anemia revisited. J. Intern. Med. 2020, 287, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Barak, P. Iron nutrition of plants in calcareous soils. Adv. Agron. 1982, 35, 217–240. [Google Scholar] [CrossRef]
- Pal, V.; Singh, G.; Dhaliwal, S.S. Yield enhancement and biofortification of chickpea (Cicerarietinum L.) grain with iron and zinc through foliar application of ferrous sulfate and urea. J. Plant Nutr. 2019, 42, 1789–1802. [Google Scholar] [CrossRef]
- Kroh, G.E.; Pilon, M. Regulation of iron homeostasis and use in chloroplasts. Int. J. Mol. Sci. 2020, 21, 3395. [Google Scholar] [CrossRef]
- Saaltink, R.M.; Dekker, S.C.; Eppinga, M.B.; Griffioen, J.; Wassen, M.J. Plant-specific effects of iron-toxicity in wetlands. Plant Soil 2017, 416, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Twardowska, I.; Wang, S.Q.; Wei, S.H.; Chen, Y.Q.; Ljupco, M. Prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under Cd soil contamination stress. J. Clean. Prod. 2019, 212, 22–36. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Billore, S.D.; Sharma, A.N.; Dupare, B.U.; Srivastava, S.K. Soybean: Introduction, improvement, and utilization in India—Problems and prospects. Agric. Res. 2013, 2, 293–300. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Mishra, A.K. Soybean—A consummate functional food: A review. J. Food Sci. Technol.-Mysore 2005, 42, 111–119. [Google Scholar]
- Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients 2016, 8, 754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merry, R.; Dobbels, A.A.; Sadok, W.; Naeve, S.; Stupar, R.M.; Lorenz, A.J. Iron deficiency in soybean. Crop Sci. 2021, 62, 36–52. [Google Scholar] [CrossRef]
- Kreye, C.; Bouman, B.A.M.; Castañeda, A.R.; Lampayan, R.M.; Faronilo, J.E.; Lactaoen, A.T.; Fernandez, L. Possible causes of yield failure in tropical aerobic rice. Field Crops Res. 2009, 111, 197–206. [Google Scholar] [CrossRef]
- Salahi, B.; Hadavi, E.; Samar, S.M. Foliar iron sulphate-organic acids sprays improve the performance of oriental plane tree in calcareous soil better than soil treatments. Urban For. Urban Green. 2017, 21, 175–182. [Google Scholar] [CrossRef]
- Sharma, S.; Chandra, S.; Kumar, A.; Bindraban, P.; Saxena, A.K.; Pande, V.; Pandey, R. Foliar application of iron fortified bacteriosiderophore improves growth and grain fe concentration in wheat and soybean. Indian J. Microbiol. 2019, 59, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.; Black, C.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 1367–1378. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate; US Departmental Agricultural Circular 939: Washington, DC, USA, 1954; pp. 1–19. [Google Scholar]
- Merwin, H.D.; Peech, M. Exchangeability of soils potassium in the sand, silt and clay fractions as influenced by the nature of the complementary exchangeable cations. Soil Sci. Soc. Am. Proc. 1950, 15, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Kumar, B.; Dhaliwal, S.S.; Singh, S.T.; Lamba, J.S.; Ram, H. Herbage production, nutritional composition and quality of teosinte under Fe fertilization. Int. J. Agric. Biol. 2016, 18, 319–329. [Google Scholar] [CrossRef]
- Shivay, Y.S.; Prasad, R.; Rahal, A. Genotypic variation for productivity, zinc utilization efficiencies and kernel quality in rice under low available zinc conditions. J. Plant Nutr. 2010, 33, 1835–1848. [Google Scholar] [CrossRef]
- Vaghar, M.S.; Sayfzadeh, S.; Zakerin, H.R.; Kobraee, S.; Valadabadi, S.A. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020, 18, 2740–2756. [Google Scholar] [CrossRef]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sadana, U.S.; Manchanda, J.S.; Dhadli, H.S. Biofortification of wheat grains with zinc (Zn) and iron (Fe) in typicustochrept soils of Punjab. Indian J. Fertil. 2009, 5, 13–16. [Google Scholar]
- Dhaliwal, S.S.; Sadana, U.S.; Manchanda, J.S.; Khurana, M.P.S.; Shukla, A.K. Differential response of maize cultivars to iron (Fe) applied through ferti-fortification. Indian J. Fertil. 2013, 9, 52–57. [Google Scholar]
- Singh, P.; Dhaliwal, S.S.; Sadana, U.S.; Manchanda, J.S. Enrichment of rice cultivars with Fe at different plant growth stages through ferti-fortification. LS-Int. J. Life Sci. 2013, 2, 140–148. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Behera, S.K.; Sandhu, P.S.; Kaur, K.; Gaber, A.; Althobaiti, Y.S.; Abdelhadi, A.A.; et al. Assessment of agroeconomic indicators of Sesamumindicum L. as influenced by application of boron at different levels and plant growth stages. Molecules 2021, 26, 6699. [Google Scholar] [CrossRef]
- Wei, Y.; Shohag, M.J.I.; Yang, X.; Yibin, Z. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Agric. Food Chem. 2012, 60, 11433–11439. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Sandhu, P.S.; Behera, S.K.; Singh, P.; Kaur, J.; Singh, H.; Abdel-Hafez, S.H.; et al. Interactive effects of foliar application of zinc, iron and nitrogen on productivity and nutritional quality of Indian Mustard (Brassica juncea L.). Agronomy 2021, 11, 2333. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Behera, S.K.; Singh, P.; Alotaibi, S.S.; Gaber, A.; Hossain, A. Comparative efficiency of mineral, chelated andnanoforms of zinc and iron for improvement of zinc and iron in Chickpea (Cicerarietinum L.) through biofortification. Agronomy 2021, 11, 2436. [Google Scholar] [CrossRef]
Sr. No. | Treatment Detail | No. of Sprays | Days after Sowing (DAS) |
---|---|---|---|
T1 | Control | — | — |
T2 | 0.5% FeSO4·7H2O | 1 | 30 |
T3 | 0.5% FeSO4·7H2O | 2 | 30 and 60 |
T4 | 0.5% FeSO4·7H2O | 3 | 30, 60 and 90 |
T5 | 1.0% FeSO4·7H2O | 1 | 30 |
T6 | 1.0% FeSO4·7H2O | 2 | 30 and 60 |
T7 | 1.0% FeSO4·7H2O | 3 | 30, 60 and 90 |
Sr. No. | No. of Sprays | Seed Yield (kg ha−1) | Straw Yield (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | Mean | 2018 | 2019 | 2020 | Mean | ||
T1 | 0 | 2150 c | 2718 b | 2323 d | 2397 c | 5782 b | 7636 e | 7240 b | 6894 c |
T2 | 1 | 2298 bc | 2965 a | 2619 cd | 2619 bc | 6079 a | 9217 bcd | 7586 b | 7636 bc |
T3 | 2 | 2570 a | 3039 a | 2817 bc | 2801 ab | 6622 ab | 10,205 ac | 7833 b | 8229 ab |
T4 | 3 | 2693 a | 3262 a | 3188 a | 3064 a | 7092 a | 11,441 a | 9489 a | 9341 a |
T5 | 1 | 2372 b | 2965 a | 2817 b | 2718 b | 6301 a | 10,304 ab | 8080 b | 8229 ab |
T6 | 2 | 2397 b | 2916 ab | 2916 ab | 2743 b | 6252 a | 10,107 ad | 8056 b | 8130 abc |
T7 | 3 | 2273 bc | 2866 b | 2866 a | 2669 bc | 4300 c | 8945 bcde | 8945 a | 7388 bc |
CD (p = 0.05) | — | 148 | 371 | 321 | 298 | 1137 | 1656 | 1038 | 1310 |
Sr. No. | No. of Sprays | Seed Fe Concentration (mg kg−1) | Straw Fe Concentration (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | Mean | 2018 | 2019 | 2020 | Mean | ||
T1 | 0 | 45.4 d | 48.3 e | 59.5 c | 53.9 d | 899 c | 921 bc | 774 d | 865 d |
T2 | 1 | 56.8 c | 56.8 cd | 65.2 b | 59.6 c | 955 b | 960 a | 840 cd | 918 c |
T3 | 2 | 65.6 a | 67.9 ab | 70.3 a | 67.9 ab | 1020 a | 962 a | 972 b | 985 b |
T4 | 3 | 69.5 a | 71.3 a | 69.0 a | 69.9 a | 1027 a | 957 a | 935 b | 973 b |
T5 | 1 | 61.8 bc | 64.8 a | 65.7 b | 64.1 bc | 986 ab | 949 ab | 909 bc | 948 bc |
T6 | 2 | 64.6 a | 63.6 bc | 64.7 b | 64.3 b | 1018 a | 960 a | 1133 a | 1037 a |
T7 | 3 | 65.7 ab | 55.7 de | 68.8 a | 63.4 bc | 1027 a | 947 ac | 1146 a | 1040 a |
CD (p = 0.05) | — | 6.22 | 7.4 | 2.98 | 5.5 | 51 | 32 | 71.2 | 51 |
Sr. No. | No. of Sprays | Seed Fe Uptake (g ha−1) | Straw Fe Uptake (g ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | Mean | 2018 | 2019 | 2020 | Mean | ||
T1 | 0 | 98 e | 131 d | 138 d | 129 d | 5198 e | 7032 d | 5604 g | 5961 f |
T2 | 1 | 131 d | 168 c | 171 c | 156 c | 5805 d | 8848 c | 6372 f | 7012 e |
T3 | 2 | 169 ab | 206 ab | 198 b | 190 a | 6755 b | 9848 b | 7614 d | 8111 c |
T4 | 3 | 187 a | 233 a | 220 a | 214 a | 7283 a | 10,949 a | 8872 c | 9088 a |
T5 | 1 | 147 cd | 192 bc | 185 bc | 174 bc | 6213 c | 9779 b | 7345 e | 7801 d |
T6 | 2 | 155 bc | 185 bc | 189 bc | 176 bc | 6364 c | 9672 b | 9127 b | 8422 b |
T7 | 3 | 149 bcd | 160 cd | 197 b | 169 bc | 4416 f | 8471 c | 10,251 a | 7684 d |
CD (p = 0.05) | — | 21 | 32 | 18 | 24 | 258 | 453 | 174 | 302 |
Treatments | AEFe (kg kg−1) | MEFe | PEFe (kg g−1) | AREFe (%) |
---|---|---|---|---|
T1 | — | 0.06 | — | — |
T2 | 177 | 0.06 | 0.89 | 86.2 |
T3 | 161 | 0.07 | 0.78 | 88.4 |
T4 | 178 | 0.07 | 0.97 | 85.7 |
T5 | 128 | 0.07 | 0.88 | 75.4 |
T6 | 69 | 0.06 | 0.63 | 50.2 |
T7 | 36 | 0.06 | 0.43 | 23.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Kaur, J.; Verma, V.; Kaur, M.; Singh, P.; Kaur, L.; Verma, G.; Singh, J.; et al. Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India. Agriculture 2022, 12, 586. https://doi.org/10.3390/agriculture12050586
Dhaliwal SS, Sharma V, Shukla AK, Kaur J, Verma V, Kaur M, Singh P, Kaur L, Verma G, Singh J, et al. Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India. Agriculture. 2022; 12(5):586. https://doi.org/10.3390/agriculture12050586
Chicago/Turabian StyleDhaliwal, Salwinder Singh, Vivek Sharma, Arvind Kumar Shukla, Janpriya Kaur, Vibha Verma, Manmeet Kaur, Prabhjot Singh, Lovedeep Kaur, Gayatri Verma, Jagdish Singh, and et al. 2022. "Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India" Agriculture 12, no. 5: 586. https://doi.org/10.3390/agriculture12050586
APA StyleDhaliwal, S. S., Sharma, V., Shukla, A. K., Kaur, J., Verma, V., Kaur, M., Singh, P., Kaur, L., Verma, G., Singh, J., Gaber, A., & Hossain, A. (2022). Biofortification of Soybean (Glycine max L.) through FeSO4·7H2O to Enhance Yield, Iron Nutrition and Economic Outcomes in Sandy Loam Soils of India. Agriculture, 12(5), 586. https://doi.org/10.3390/agriculture12050586