Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Setup
2.3. Sampling and Measurements
2.4. Principal Component Analysis
2.5. Statistical Analysis
3. Results
3.1. The Fv/Fm and SPAD
3.2. The Plant Height and LAI
3.3. The IPAR and RUE
3.4. Yield, Biomass, and HI
3.5. Comprehensive Evaluation Based on Principal Component Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, P.; Xu, J.; Zhang, Z.; Wang, K.; Li, T.; Wei, Q.; Li, Y. Carbon pathways in aggregates and density fractions in Mollisols under water and straw management: Evidence from 13C natural abundance. Soil Bio. Biochem. 2022, 169, 108684. [Google Scholar] [CrossRef]
- Liang, J. Accelerate the construction of long-term mechanism for black land protection in Longjiang. Heilongjiang Dly. 2021. [Google Scholar]
- Zhang, D.J.; Hu, X.; Ma, J.H.; Guo, Y.X.; Zong, J.J.; Yang, X.Q. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. Chin. J. Appl. Ecol. 2021, 32, 1753–1760. [Google Scholar]
- Chen, P.; Nie, T.; Chen, S.; Zhang, Z.; Qi, Z.; Liu, W. Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China. Agric. Water Manag. 2019, 222, 139–153. [Google Scholar] [CrossRef]
- Xu, D.B.; Zhao, S.J.; Yuan, J.F.; Peng, C.L.; Zhou, J.X.; Xia, X.G.; Lu, G.H. Chemical N fertilizer replaced with organic fertilizer affecting yield and quality of leaf vegetable and N leaching in soils. Trans. Chin. Soc. Agric. Eng. 2018, 34 (Suppl. S1), 13–18. [Google Scholar]
- Lu, S.C.; Wang, X.B.; Weng, F.J.; Wang, R.; Xiao, J.Z. Effect of different fertilization treatments on soil nitrate nitrogen movement and the growth and quality of celery in greenhouse. Tianjin Agric. Sci. 2015, 21, 8–11. [Google Scholar]
- Li, Y.B.; Li, P.; Wang, S.H.; Xu, L.Y.; Deng, J.J.; Jiao, J.G. Effects of organic fertilizer application on crop yield and soil properties in rice-wheat rotation system: A meta-analysis. Chin. J. Appl. Ecol. 2021, 32, 3231–3239. [Google Scholar]
- Huang, G.D.; Song, Q.H.; Wang, X.H.; Wang, X.; Feng, Y.; Sun, S.; Li, H.; Zhang, Z.; Wang, N.; Song, F. Effects of fertilizers containing bacillus subtilis on photosynthesis of soybean leaves and soil enzyme activities. Soils Crops 2021, 10, 99–107. [Google Scholar]
- Zhang, Z.X.; Feng, Z.J.; Qi, Z.J.; Zheng, E.N.; Yang, H.; Chen, P. Effects of compound microbial organic fertilizer with water-saving irrigation on photosynthetic and yield of rice. Trans. Chin. Soc. Agric. Mach. 2019, 50, 313–321. [Google Scholar]
- He, H.; Zhang, Y.T.; Wei, C.Z.; Li, J. Effects of different organic substitution reducing fertilizer patterns on maize growth and soil fertility. J. Soil Water Conserv. 2019, 33, 281–287. [Google Scholar]
- Xie, S.; Yang, F.; Feng, H.; Yu, Z.; Liu, C.; Wei, C.; Liang, T. Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations: Evidence in nutrient contents and isotope fractionations. Sci. Total Environ. 2021, 762, 143059. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.P.; Xue, Z.Q.; Yang, Z.Y.; Chai, Z.; Niu, J.P.; Shi, Z.Y. Effects of microbial organic fertilizers on astragalus membranaceus growth and rhizosphere microbial community. Ann. Microbiol. 2021, 71, 11. [Google Scholar] [CrossRef]
- Shu, X.; Wang, Y.; Wang, Y.; Ma, Y.; Men, M.; Zheng, Y.; Xue, C.; Peng, Z.; Noulas, C. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 2021, 11, 4396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W. Protect the black land and be a good “ballast” for national food security. Environ. Sci. Manag. 2021, 46, 1. [Google Scholar]
- Ma, X.; Li, H.; Xu, Y.; Liu, C. Effects of organic fertilizers via quick artificial decomposition on crop growth. Sci. Rep. 2021, 11, 3900. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.F.; Yang, S.M.; Zou, B.L.; Xie, Y.; Liu, J.; Zhang, R.; Lv, Y.; Cai, Y.; Zhang, S.; Li, J.; et al. Effects of combined application of rapeseed-cake as organic manure and chemical fertilizer on yield, quality and nutrient use efficiency of flue-cured tobacco. Acta Pedol. Sin. 2020, 57, 1564–1574. [Google Scholar]
- Du, W.Y.; Tang, S.; Wang, H. The status of organic fertilizer industry and organic fertilizer resources in China. Soil Fertil. Sci. China 2020, 3, 210–219. [Google Scholar]
- Zheng, E.; Zhu, Y.; Hu, J.; Zhang, Z.; Xu, T. Effects of humic acid on japonica rice production under different irrigation practices and a TOPSIS-based assessment on the Songnen Plain, China. Irrig. Sci. 2022, 40, 87–101. [Google Scholar] [CrossRef]
- Zheng, E.N.; Yang, H.; Zhang, Z.X. Influence of different nitrogen forms application on rice photosynthesis: Fluorescence with water-saving irrigation in black soil region of Songnen Plain, Northeast China. Paddy Water Environ. 2018, 16, 795–804. [Google Scholar]
- Zheng, E.; Zhang, C.; Qi, Z.; Zhang, Z. Experimental study on radiation utilization efficiency and soil temperature in paddy field with different irrigation methods in northeast china. Paddy Water Environ. 2020, 18, 179–191. [Google Scholar] [CrossRef]
- Du, X.; Chen, B.; Shen, T.; Zhang, Y.; Zhou, Z. Effect of cropping system on radiation use efficiency in double cropped wheat-cotton. Field Crops Res. 2015, 170, 21–31. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zheng, E.N.; Wang, C.M.; Fu, N.H. Effect of different water and nitrogen levels on chlorophyll fluorescence parameters and photosynthetic characteristics of rice. Trans. Chin. Soc. Agric. Mach. 2017, 48, 176–183. [Google Scholar]
- Yang, F.F.; Li, C.F.; Liu, D. Effects of organic fertiizer on photosynthetic characteristics and yield of sugar beet under miixed salinealkali stress. Journl Northwest AF Univ. 2019, 47, 74–82. [Google Scholar]
- Wang, B.K.; Yu, D.B.; Zhao, H.Y.; Meng, F.G.; Zhang, W.; Wei, D.X.; Li, Z.G. Analysis of net photosynthetic rate and SPAD values of super-high yield soybean leaves at different nodes during different developing stages. Soybean Sci. 2022, 41, 172–178. [Google Scholar]
- Dan, C.; Liang-Gang, Z.; Jun, X.; Qian, Z.; Yan, Z. Effects of bio-fertilizer on organically cultured cucumber growth and soil biological characteristics. Chin. J. Appl. Ecol. 2010, 21, 2587–2592. [Google Scholar]
- Zhang, C.C.; Shangguan, C.P. Effects of nitrogen fertilizeration on photosynthethc pigment and fluorescence characteristics in leaves of winter wheat cultivars on deyland. J. Nucl. Agric. Sci. 2007, 21, 299–304. [Google Scholar]
- Kalteh, M.; Norouzi, H.A.; Faraji, A.; Haghighi, A.A.; Alamdari, E.G. Effect of plant density, humic acid and weed managements on yield, yield components and water use efficiency in direct-seeded rice (Oryza sativa) production. Rom. Agric. Res. 2021, 38, 311–321. [Google Scholar]
- Khattak, R.A.; Dost, M. Seed cotton yield and nutrient concentrations as influenced by lignitic coal derived humic acid in salt-affected soils. Sarhad J. Agric. 2010, 26, 43–49. [Google Scholar]
- Tahir, M.M.; Khurshid, M.; Khan, M.Z.; Abbasi, M.K.; Kazmi, M.H. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 2011, 21, 124–131. [Google Scholar] [CrossRef]
- Ye, H.C.; Huang, Q.H.; Yu, X.C.; Xu, X.L.; Liao, Z.M.; Chen, M. Effects of long-term application of potassium and organic fertilizer on leaf area index and yield components of rice in red soil paddy field. Acta Agric. Jiangxi. 2010, 22, 6–9. [Google Scholar]
- Wei, Y.H.; He, S.H.; Xu, C.M. Influence of water-fertilizer coupling on rice LAI and yield under the condition of controlling irrigation. Syst. Sci. Compr. Agric. 2010, 26, 500–505. [Google Scholar]
- Liu, T.; Yang, X.G.; Gao, J.Q.; He, B.; Bai, F.; Zhang, F.; Liu, Z.; Wang, X.; Sun, S.; Wan, N.; et al. Radiation use efficiency of different grain crops in northeast China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 186–193. [Google Scholar]
- Chen, Y.H.; Yu, S.L.; Yu, Z.W. Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron. Sin. 2003, 29, 730–734. [Google Scholar]
- Meng, X.; Zhou, L.; Zhang, Z.; Wu, Q. Effects of different irrigation patterns on growth, water and radiation use efficiency of rice. Trans. Chin. Soc. Agric. Mach. 2019, 50, 285–292. [Google Scholar]
- Liu, T.D.; Song, F.B. The effect of wide-narrow row planting pattern on light interception and RUE of maize. Acta Agric. Boreali-Sin. 2011, 26, 118–123. [Google Scholar]
- Liu, Z.; Sun, N. Enhancing photosynthetic CO2 use efficiency in rice: Approaches and challenges. Acta Physiol. Plant. 2013, 35, 1001–1009. [Google Scholar] [CrossRef]
Treatments | Pure Nitrogen N (kg∙ha−1) | HA (kg∙ha−1) | P (kg∙ha−1) | K (kg∙ha−1) |
---|---|---|---|---|
T1 | 100% | 0 | 45 | 80 |
T2 | 70% | 30% | 45 | 80 |
T3 | 50% | 50% | 45 | 80 |
T4 | 30% | 70% | 45 | 80 |
T5 | 0 | 100% | 45 | 80 |
The Key Stages (g·MJ−1) | The Key Stages (Fd%) | The Whole Stage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Treatments | Tillering | Jointing | Heading | Ripening | Tillering | Jointing | Heading | Ripening | Fd% | IPAR (MJ·m−2) | RUE (g·MJ−1) |
T1 | 1.67 a | 1.86 ab | 1.68 ab | 0.87 a | 16.03 c | 63.92 c | 78.11 c | 62.65 c | 47.45 b | 1036 b | 1.80 a | |
T2 | 1.68 a | 1.78 b | 1.49 c | 0.87 a | 12.92 d | 60.18 d | 74.66 d | 56.46 d | 42.54 c | 937 c | 1.71 b | |
Y1 | T3 | 1.62 a | 1.89 ab | 1.65 b | 0.85 a | 17.22 c | 65.34 c | 79.14 a | 64.37 c | 48.01 b | 1051 b | 1.79 a |
T4 | 1.64 a | 1.98 a | 1.76 a | 0.89 a | 19.24 b | 72.36 b | 87.52 b | 71.87 b | 53.47 a | 1170 a | 1.85 a | |
T5 | 1.68 a | 1.93 a | 1.76 a | 0.87 a | 22.58 a | 74.85 a | 90.15 a | 75.50 a | 56.36 a | 1234 a | 1.85 a | |
T1 | 1.69 a | 2.21 b | 2.38 ab | 1.05 a | 23.15 b | 70.74 c | 82.78 c | 69.05 b | 49.73 b | 906 b | 1.95 a | |
T2 | 1.66 a | 1.72 c | 1.92 c | 1.03 a | 16.23 c | 58.01 a | 73.17 d | 56.10 c | 39.31 c | 717 c | 1.83 b | |
Y2 | T3 | 1.69 a | 2.24 b | 2.27 b | 1.04 a | 23.32 b | 71.44 c | 83.10 c | 68.99 b | 50.00 b | 910 b | 1.96 a |
T4 | 1.67 a | 2.37 a | 2.45 a | 1.02 a | 30.31 a | 79.84 b | 90.98 a | 76.83 a | 56.56 a | 1034 a | 2.00 a | |
T5 | 1.62 a | 2.38 a | 2.44 a | 1.01 a | 31.42 a | 82.90 a | 92.52 a | 78.15 a | 58.03 a | 1060 a | 2.01 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, E.; Qin, M.; Zhang, Z.; Xu, T. Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China. Agriculture 2022, 12, 653. https://doi.org/10.3390/agriculture12050653
Zheng E, Qin M, Zhang Z, Xu T. Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China. Agriculture. 2022; 12(5):653. https://doi.org/10.3390/agriculture12050653
Chicago/Turabian StyleZheng, Ennan, Mengting Qin, Zhongxue Zhang, and Tianyu Xu. 2022. "Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China" Agriculture 12, no. 5: 653. https://doi.org/10.3390/agriculture12050653
APA StyleZheng, E., Qin, M., Zhang, Z., & Xu, T. (2022). Humic Acid Fertilizer Incorporation Increases Rice Radiation Use, Growth, and Yield: A Case Study on the Songnen Plain, China. Agriculture, 12(5), 653. https://doi.org/10.3390/agriculture12050653