Scientific Irrigation Scheduling for Sustainable Production in Olive Groves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Moisture Measurement Tools
2.2. Site Description and Experimental Layout
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the Effects of Soil Moisture Sensors Positioning and Accuracy on Soil Moisture Based Drip Irrigation Scheduling Systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- An, S.K.; Lee, H.B.; Kim, J.; Kim, K.S. Soil Moisture Sensor-Based Automated Irrigation of Cymbidium under Various Substrate Conditions. Sci. Hortic. 2021, 286, 110133. [Google Scholar] [CrossRef]
- Pramanik, M.; Khanna, M.; Singh, M.; Singh, D.K.; Sudhishri, S.; Bhatia, A.; Ranjan, R. Automation of Soil Moisture Sensor-Based Basin Irrigation System. Smart Agric. Technol. 2022, 2, 100032. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving Water-Efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Taghvaeian, S.; Andales, A.A.; Allen, L.N.; Kisekka, I.; O’Shaughnessy, S.A.; Porter, D.O.; Sui, R.; Irmak, S.; Fulton, A.; Aguilar, J. Irrigation Scheduling for Agriculture in the United States: The Progress Made and the Path Forward. Trans. ASABE 2020, 63, 1603–1618. [Google Scholar] [CrossRef]
- Mohamadzade, F.; Gheysari, M.; Kiani, M. Root Adaptation of Urban Trees to a More Precise Irrigation System: Mature Olive as a Case Study. Urban For. Urban Green. 2021, 60, 127053. [Google Scholar] [CrossRef]
- Sarma, A. Precision Irrigation-a Tool for Sustainable Management of Irrigation Water. In Proceedings of the Civil Engineering for Sustainable Development-Opportunities and Challenges, Guwahati, India, 19–21 December 2016; pp. 19–21. [Google Scholar]
- Mohamed, E.S.; Ali, A.; El-Shirbeny, M.; Abutaleb, K.; Shaddad, S.M. Mapping Soil Moisture and Their Correlation with Crop Pattern Using Remotely Sensed Data in Arid Region. Egypt. J. Remote Sens. Sp. Sci. 2020, 23, 347–353. [Google Scholar] [CrossRef]
- Aguilar, J.; Rogers, D.; Kisekka, I. Irrigation Scheduling Based on Soil Moisture Sensors and Evapotranspiration. Kans. Agric. Exp. Stn. Res. Rep. 2015, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Younker, B.J. Irrigation Scheduling: Crucial During a Drought. 2012 Press Release; Natural Resources Conservation Service. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/ks/newsroom/?cid=nrcs142p2_033543 (accessed on 2 February 2022).
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In Situ Measurement of Soil Moisture: A Comparison of Techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Tubeileh, A.; Bruggeman, A.; Turkelboom, F. Effect of Water Harvesting on Growth of Young Olive Trees in Degraded Syrian Dryland. Environ. Dev. Sustain. 2009, 11, 1073–1090. [Google Scholar] [CrossRef]
- Carr, M.K.V. The water relations and irrigation requirements of olive (Olea europaea L.): A review. Exp. Agric. 2013, 49, 597–639. [Google Scholar] [CrossRef]
- Gardezi, A. Olive Cultivation Is the Best Solution for Pakistan’s Economy, Here’s Why. Available online: https://propakistani.pk/2020/10/24/olive-cultivation-is-the-best-solution-for-pakistans-economy-heres-why/ (accessed on 9 September 2021).
- Agriculture Information Bank Olive (Zytoon) Cultivation in Pakistan. Available online: https://agrinfobank.com.pk/olive-zytoon-cultivation-in-pakistan/ (accessed on 9 September 2021).
- Davis, S.L.; Dukes, M.D. Irrigation Scheduling Performance by Evapotranspiration-Based Controllers. Agric. Water Manag. 2010, 98, 19–28. [Google Scholar] [CrossRef]
- McCready, M.S.; Dukes, M.D. Landscape Irrigation Scheduling Efficiency and Adequacy by Various Control Technologies. Agric. Water Manag. 2011, 98, 697–704. [Google Scholar] [CrossRef]
- Aziz, M.; Rizvi, S.A.; Sultan, M.; Bazmi, M.S.A.; Shamshiri, R.R.; Ibrahim, S.M.; Imran, M.A. Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate. Agriculture 2022, 12, 242. [Google Scholar] [CrossRef]
- Farg, E.; Arafat, S.M.; Abd El-Wahed, M.S.; El-Gindy, A.M. Estimation of Evapotranspiration ETc and Crop Coefficient Kc of Wheat, in South Nile Delta of Egypt Using Integrated FAO-56 Approach and Remote Sensing Data. Egypt. J. Remote Sens. Sp. Sci. 2012, 15, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Chávez, J.L.; Evett, S.R. Using Soil Water Sensors to Improve Irrigation Management. In Proceedings of the 2012 Central Plains Irrigation Conference, Colby, KS, USA, 21–22 February 2012. [Google Scholar]
- Shamshiri, R.R. Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations. In Agricultural Robots: Fundamentals and Applications; Hameed, I.A., Ed.; IntechOpen: Rijeka, Croatia, 2019; pp. 91–116. ISBN 978-1-78984-934-9. [Google Scholar]
- Payero, J.O.; Mirzakhani-Nafchi, A.; Khalilian, A.; Qiao, X.; Davis, R. Development of a Low-Cost Internet-of-Things (IoT) System for Monitoring Soil Water Potential Using Watermark 200SS Sensors. Adv. Internet Things 2017, 7, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Irmak, S.; Burgert, M.J.; Yang, H.S.; Cassman, K.G.; Walters, D.T.; Rathje, W.R.; Payero, J.O.; Grassini, P.; Kuzila, M.S.; Brunkhorst, K.J.; et al. Large-Scale On-Farm Implementation of Soil Moisture-Based Irrigation Management Strategies for Increasing Maize Water Productivity. Trans. ASABE 2012, 55, 881–894. [Google Scholar] [CrossRef]
- Evett, S.R.; Colaizzi, P.D.; Schwartz, R.C.; O’Shaughnessy, S.A. Soil Water Sensing–Focus on Variable Rate Irrigation. In Proceedings of the 26th Annual Central Plains Irrigation Conference, Burlington, Colorado, 25–26 February 2014. [Google Scholar]
- Radi; Murtiningrum; Ngadisih; Muzdrikah, F.S.; Nuha, M.S.; Rizqi, F.A. Calibration of Capacitive Soil Moisture Sensor (SKU:SEN0193). In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; pp. 1–6. [Google Scholar]
- González-Teruel, J.D.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Toledo-Moreo, A.B.; Jiménez-Buendía, M.; Soto-Valles, F. Design and Calibration of a Low-Cost SDI-12 Soil Moisture Sensor. Sensors 2019, 19, 491. [Google Scholar] [CrossRef] [Green Version]
- Shamshiri, R.R.; Bojic, I.; van Henten, E.; Balasundram, S.K.; Dworak, V.; Sultan, M.; Weltzien, C. Model-Based Evaluation of Greenhouse Microclimate Using IoT-Sensor Data Fusion for Energy Efficient Crop Production. J. Clean. Prod. 2020, 263, 121303. [Google Scholar] [CrossRef]
- Holzman, M.; Rivas, R.; Carmona, F.; Niclòs, R. A Method for Soil Moisture Probes Calibration and Validation of Satellite Estimates. MethodsX 2017, 4, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, L.D.; Zhao, S. The Internet of Things: A Survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Majumdar, A.K. Chapter 8—Free-Space Optical Communications: Role and Integration with the Internet of Things. In Optical Wireless Communications for Broadband Global Internet Connectivity: Fundamentals and Potential Applications; Majumdar, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 245–258. ISBN 978-0-12-813365-1. [Google Scholar]
- Seyfried, M.S.; Murdock, M.D. Measurement of Soil Water Content with a 50-MHz Soil Dielectric Sensor. Soil Sci. Soc. Am. J. 2004, 68, 394–403. [Google Scholar] [CrossRef]
- Or, D.; Tuller, M.; Wraith, J.M. Water Potential. In Encyclopedia of Soils in the Environment; Elsevier: Oxford, UK, 2005; pp. 270–277. ISBN 978-0-12-348530-4. [Google Scholar]
- Aziz, M.; Tariq, M. Assessing the Potential of Rain-Water Harvesting (in Situ) for Sustainable Olive (Oleaeuropaea L.) Cultivation in Water-Scarce Rain-Fed Areas. Irrig. Drain. Syst. Eng. 2018, 7, 212. [Google Scholar]
- Fazackerley, S.; Lawrence, R. Automatic in Situ Determination of Field Capacity Using Soil Moisture Sensors. Irrig. Drain. 2012, 61, 416–424. [Google Scholar] [CrossRef]
- Masmoudi, M.M.; Masmoudi-Charfi, C.; Mahjoub, I.; Mechlia, N. Ben Water Requirements of Individual Olive Trees in Relation to Canopy and Root Development. Options Méditerranéennes Série B. Etudes Rech. 2007, 1, 73–80. [Google Scholar]
- Orgaz, F.; Pastor, M. Fertirrigacion Del Olivo. Programacion de Riesgos. Fertirrigacion. Cultiv. Hortic. Frut. Ornam. Cadahia Lopez C. 2005, 496–533. [Google Scholar]
- Capra, A.; Scicolone, B. Irrigation Scheduling Optimisation in Olive Groves. J. Exp. Agric. Int. 2018, 28, 1–19. [Google Scholar] [CrossRef]
Location | Depth | Dry wt. of Soil | Water Added | Saturation Percentage (SP) | Soil Texture |
---|---|---|---|---|---|
(cm) | (kg) | (ml) | (%) | ||
Spot 1 | 15 | 0.250 | 70 | 28 | Sandy loam |
30 | 0.250 | 75 | 30 | Sandy loam | |
Spot 2 | 15 | 0.250 | 74 | 29.6 | Sandy loam |
30 | 0.250 | 76 | 30.4 | Sandy loam |
Saturation Percentage (%) | Soil Texture |
---|---|
<20 | sandy soil |
20–30 | sandy loam |
30–45 | loam soil |
>45–65 | clay soil |
>65 | heavy clay |
Date | Time | Depth | Wet wt. of the Soil | Dry wt. of the Soil | Moisture Contents |
---|---|---|---|---|---|
(cm) | (g) | (g) | mm/m | ||
26 September 2018 | 2:00 PM | 30 | 344 | 299 | 37.25 |
60 | 376 | 324 | 79.44 | ||
27 September 2018 | 10:00 AM | 30 | 422 | 363 | 40.23 |
60 | 317 | 277 | 71.48 | ||
27 September 2018 | 2:00 PM | 30 | 346 | 305 | 33.27 |
60 | 412 | 361 | 69.93 | ||
28 September 2018 | 10:00 AM | 30 | 403 | 355 | 33.46 |
60 | 319 | 281 | 66.94 | ||
28 September 2018 | 2:00 PM | 30 | 451 | 398 | 32.96 |
60 | 367 | 324 | 65.69 |
Depth | Physical Properties | Chemical Properties | pH | ||||||
---|---|---|---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | N (%) | P (ppm) | K (ppm) | O.M (%) | EC (ds/m) | ||
0–0.15 m | 10 | 30 | 60 | 0.8 | 5 | 138 | 0.6 | 0.3 | 7.68 |
0.15–0.3 m | 2 | 3.4 | 132 | 0.33 | 0.25 | 7.79 |
Soil Moisture Sensors and Conventional Practice | Year | Total Number of Irrigations | Supplemental Irrigation with Drip Irrigation (mm) | Water Saving (%) |
---|---|---|---|---|
Gypsum blocks | 2018 | 4 | 209 | 17 |
2019 | 5 | 404 | 22 | |
Tensiometers | 2018 | 4 | 209 | 17 |
2019 | 5 | 404 | 22 | |
Irrometer sensor | 2018 | 4 | 209 | 17 |
2019 | 4 | 391 | 25 | |
Farmer practice | 2018 | 7 | 251 | |
2019 | 8 | 520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.; Khan, M.; Anjum, N.; Sultan, M.; Shamshiri, R.R.; Ibrahim, S.M.; Balasundram, S.K.; Aleem, M. Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture 2022, 12, 564. https://doi.org/10.3390/agriculture12040564
Aziz M, Khan M, Anjum N, Sultan M, Shamshiri RR, Ibrahim SM, Balasundram SK, Aleem M. Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture. 2022; 12(4):564. https://doi.org/10.3390/agriculture12040564
Chicago/Turabian StyleAziz, Marjan, Madeeha Khan, Naveeda Anjum, Muhammad Sultan, Redmond R. Shamshiri, Sobhy M. Ibrahim, Siva K. Balasundram, and Muhammad Aleem. 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves" Agriculture 12, no. 4: 564. https://doi.org/10.3390/agriculture12040564
APA StyleAziz, M., Khan, M., Anjum, N., Sultan, M., Shamshiri, R. R., Ibrahim, S. M., Balasundram, S. K., & Aleem, M. (2022). Scientific Irrigation Scheduling for Sustainable Production in Olive Groves. Agriculture, 12(4), 564. https://doi.org/10.3390/agriculture12040564