Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Crop Water Requirement
3. Results and Discussions
3.1. Kharif Crops
3.2. Rabi Crops
3.3. Crop Water Requirement
3.4. Surface Water Availability
3.5. Groundwater Fluctuations
3.6. Highly Stressed Areas
3.7. Cropping Effect
3.8. Climatic Effect and Effect of Tubewell Density
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Cheema, M.J.M.; Ahmed, W.; Arshad, M. Delineation of Hydrological Response Units to Estimate Water Demand of Canal Command in Lower Chenab Canal Using Gis Modeling. Pakistan J. Agric. Sci. 2018, 55, 211–215. [Google Scholar] [CrossRef]
- Shah, M.A.A.; Anwar, A.A.; Bell, A.R.; Ul Haq, Z. Equity in a Tertiary Canal of the Indus Basin Irrigation System (IBIS). Agric. Water Manag. 2016, 178, 201–214. [Google Scholar] [CrossRef]
- Imran, M.A.; Xu, J.; Sultan, M.; Shamshiri, R.R.; Ahmed, N.; Javed, Q.; Asfahan, H.M.; Latif, Y.; Usman, M.; Ahmad, R. Free Discharge of Subsurface Drainage Effluent: An Alternate Design of the Surface Drain System in Pakistan. Sustainability 2021, 13, 4080. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; van de Giesen, N.; Janjua, S.; Shahid, M.L.U.R.; Farooq, R. An Engineering Perspective of Water Sharing Issues in Pakistan. Water 2020, 12, 477. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, A.; Arshad, M.; Ahmad, R.; Khan, Z.M.; Qamar, U.; Farid, H.U.; Sultan, M.; Ahmad, F. Development of Groundwater Flow Model (MODFLOW) to Simulate the Escalating Groundwater Pumping in the Punjab, Pakistan. Pakistan J. Agric. Sci. 2018, 55, 629–638. [Google Scholar]
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2020: Water and Climate Change; United Nations Educational Sci.: Paris, France, 2020; ISBN 9789231003714. [Google Scholar]
- Famiglietti, J.S. The Global Groundwater Crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Gorelick, S.M.; Zheng, C. Global Change and the Groundwater Management Challenge. Water Resour. Res. 2015, 3031–3051. [Google Scholar] [CrossRef]
- Lytton, L.; Ali, A.; Garthwaite, B.; Punthakey, J.F.; Basharat, S. Groundwater in Pakistan’s Indus Basin: Present and Future Prospects. Open Knowl. Repos. 2021, 164, 66. [Google Scholar]
- Watto, M.A.; Mugera, A.W. Groundwater Depletion in the Indus Plains of Pakistan: Imperatives, Repercussions and Management Issues. Int. J. River Basin Manag. 2016, 14, 447–458. [Google Scholar] [CrossRef]
- Programme Mondial pour L’évaluation des Ressources en eau, ONU-Eau. The United Nations World Water Development Report 2014; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2014. [Google Scholar]
- Shakoor, A.; Mahmood Khan, Z.; Arshad, M.; Farid, H.U.; Sultan, M.; Azmat, M.; Shahid, M.A.; Hussain, Z. Regional Groundwater Quality Management through Hydrogeological Modeling in LCC, West Faisalabad, Pakistan. J. Chem. 2017, 2017, 2041648. [Google Scholar] [CrossRef]
- Muhammad, A.M.; Zhonghua, T.; Dawood, A.S.; Earl, B. Evaluation of Local Groundwater Vulnerability Based on DRASTIC Index Method in Lahore, Pakistan. Geofis. Int. 2015, 54, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Mujtaba, A.; Nabi, G.; Masood, M.; Sultan, M.; Saleem, A.; Saleem, A.; Ali, A.; Ghaffar, M.A. Development of Water Management Strategies in Arid Region of Punjab Pakistan. FRESENIUS Environ. Bull. 2022, 31, 500–509. [Google Scholar]
- Falkenmark, M. The Massive Water Scarcity Now Threatening Africa. Ambio 1989, 18, 112–118. [Google Scholar]
- Qureshi, R.H.; Ashraf, M. Water Security Issues of Agriculture in Pakistan; PAS Islamabad Pak: Islamabad, Pakistan, 2019. [Google Scholar]
- Kirshen, P.H.; Strzepek, K.M. Comprehensive Assessment of the Freshwater Resources of the World; FAO: Rome, Italy, 1997; pp. 393–398. [Google Scholar]
- Susanne, M.S.; Treguer, O.D. Beyond Crop per Drop; World Bank: Washington, DC, USA, 2018; ISBN 9781464812989. [Google Scholar] [CrossRef]
- Economic Survey of Pakistan. Available online: http://finance.gov.pk/survey_0708.html (accessed on 24 March 2021).
- FAO. The State of Food and Agriculture, 1966; FAO: Rome, Italy, 2009; ISBN 9789251062159. [Google Scholar]
- Hussain, I.; Mudasser, M.; Hanjra, M.A.; Amrasinghe, U.; Molden, D. Improving Wheat Productivity in Pakistan: Econometric Analysis Using Panel Data from Chaj in the Upper Indus Basin. Water Int. 2004, 29, 189–200. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Xue, C.; Wu, J. Progress, Opportunities, and Key Fields for Groundwater Quality Research under the Impacts of Human Activities in China with a Special Focus on Western China. Environ. Sci. Pollut. Res. 2017, 24, 13224–13234. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Wang, S.; Tian, R.; Xue, C.; Feng, W.; Li, Y. Spatiotemporal Variation of Groundwater Quality in an Arid Area Experiencing Long-Term Paper Wastewater Irrigation, Northwest China. Environ. Earth Sci. 2017, 76, 460. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Nobre, C.A. Climate Change and Water Resources. In Waters of Brazil; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Ibrakhimov, M.; Awan, U.K.; George, B.; Liaqat, U.W. Understanding Surface Water–Groundwater Interactions for Managing Large Irrigation Schemes in the Multi-Country Fergana Valley, Central Asia. Agric. Water Manag. 2018, 201, 99–106. [Google Scholar] [CrossRef]
- GoP. Punjab Development Statistics; Bureau of Statistics, Government of the Punjab: Lahore, Pakistan, 2014. [Google Scholar]
- Shakoor, A.; Khan, Z.M.; Farid, H.U.; Sultan, M.; Ahmad, I.; Ahmad, N.; Mahmood, M.H.; Ali, M.U. Delineation of Regional Groundwater Vulnerability Using DRASTIC Model for Agricultural Application in Pakistan. Arab. J. Geosci. 2020, 13, 195. [Google Scholar] [CrossRef]
- Hussain, M. Rehabilitation of Lower Chenab Canal (Lcc) System Punjab Pakistan. Pakistan Eng. Congr. 2020, 33, 449. [Google Scholar]
- Yongguang, H.; Buttar, N.A.; Shabbir, A.; Faheem, M.; Aleem, M. Precision Management of Groundwater Abstraction on Different Spatial Scales of Lower Chenab Canal System in Punjab, Pakistan. IFAC-PapersOnLine 2018, 51, 397–401. [Google Scholar] [CrossRef]
- Usman, M.; Qamar, M.U.; Becker, R.; Zaman, M.; Conrad, C.; Salim, S. Numerical Modelling and Remote Sensing Based Approaches for Investigating Groundwater Dynamics under Changing Land-Use and Climate in the Agricultural Region of Pakistan. J. Hydrol. 2020, 581, 124408. [Google Scholar] [CrossRef]
- Awan, U.K.; Liaqat, U.W.; Choi, M.; Ismaeel, A. A SWAT Modeling Approach to Assess the Impact of Climate Change on Consumptive Water Use in Lower Chenab Canal Area of Indus Basin. Hydrol. Res. 2016, 47, 1025–1037. [Google Scholar] [CrossRef]
- Qureshi, A.S.; McCornick, P.G.; Sarwar, A.; Sharma, B.R. Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan. Water Resour. Manag. 2010, 24, 1551–1569. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S. Groundwater Governance in Pakistan: From Colossal Development to Neglected Management. Water 2020, 12, 3017. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Anwar, A.A.; Aslam, M. Groundwater Monitoring and Management: Status and Options in Pakistan. Comput. Electron. Agric. 2017, 135, 143–153. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food & Agriculture Organization: Rome, Italy, 1992; ISBN 9251031061. [Google Scholar]
- Programme Monitoring & Implementation Unit (Pmiu) Irrigation Department, Government of the Punjab. Available online: https://irrigation.punjab.gov.pk (accessed on 10 March 2022).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56—Crop Evapotranspiration; Food and Agriculture Organisation of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Shakir, A.S.; Qureshi, M.M. Crop Water Requirement and Availability in the Lower Chenab Canal System in Pakistan. WIT Trans. Ecol. Environ. 2005, 80, 10. [Google Scholar]
- Waqas, M.M.; Awan, U.K.; Cheema, M.J.M.; Ahmad, I.; Ahmad, M.; Ali, S.; Shah, S.H.H.; Bakhsh, A.; Iqbal, M. Estimation of Canal Water Deficit Using Satellite Remote Sensing and GIS: A Case Study in Lower Chenab Canal System. J. Indian Soc. Remote Sens. 2019, 47, 1153–1162. [Google Scholar] [CrossRef]
- Rizwan, M.; Bakhsh, A.; Li, X.; Anjum, L.; Jamal, K.; Hamid, S. Evaluation of the Impact of Water Management Technologies on Water Savings in the Lower Chenab Canal Command Area, Indus River Basin. Water 2018, 10, 681. [Google Scholar] [CrossRef] [Green Version]
Description | LCC | Upper Gugera | Lower Gugera | Burala | Mian Ali | Rakh | Jhang Upper | Jhang Lower | Bhowana |
---|---|---|---|---|---|---|---|---|---|
Division | Khanki | Upper Gugera | Lower Gugera | Burala | Upper Gugera | Hafizabad | FSD Canal | Jhang | Jhang |
Section | Chenawan | Ajniawala | Jaranwala | Farida | Salar | Main Line Lower | Bhobra | Sheikh Chur | Jaura |
Distance (km2) | 64.36 | 90.10 | 123.89 | 156.07 | 32.18 | 88.50 | 98.15 | 59.53 | 27.35 |
Designed head discharge (m3/s) | 230.58 | 210.79 | 74.84 | 58.22 | 20.50 | 38.34 | 88.77 | 42.98 | 14.33 |
Authorized tail discharge (m3/s) | 0.00 | 125.87 | 16.21 | 9.00 | 10.76 | 11.27 | 51.93 | 10.96 | 10.87 |
Authorized tail gauge (m) | 0.00 | 3.29 | 0.00 | 0.85 | 0.66 | 0.69 | 1.94 | 0.30 | 0.30 |
Gross command area (km2) | 14,973.38 | 4865.60 | 62.50 | 2344.6 | 30.46 | 1553.79 | 1616.43 | 38.01 | 12.20 |
Culturable command area (km2) | 13,759.32 | 4102.19 | 51.54 | 2064.0 | 25.90 | 1258.08 | 1272.17 | 35.15 | 8.89 |
Parameters | Duration | Department |
---|---|---|
Climatic Data | 1990–2020 * | Pakistan Meteorological Department (PMD) |
Groundwater Levels | 2003–2018 | Punjab Irrigation Department (PID) |
Streamflow | 1995–2016 | Punjab Irrigation Department (PID) |
Crops grown | 1995–2020 | Crop Reporting Service (CRS), Directorate of Agriculture, Lahore |
No. of Tubewells | 2008–2020 |
Seasons | Crops | Faisalabad | Sheikhupura | Toba Tek Singh |
---|---|---|---|---|
Kharif Season | Rice | 12% | 70% | 11% |
Sugarcane | 31% | 9% | 23% | |
Fodder | 30% | 15% | 21% | |
Maize | 13% | 3% | 16% | |
Rabi Season | Wheat | >70% | >70% | >70% |
Areas | Rainfall (mm) | Min Temperature (°C) | Max Temperature (°C) |
---|---|---|---|
Faisalabad | 500–700 | 16–19 | 32–38 |
Sheikhupura | 800–1200 | 18–20 | 29–31 |
Toba Tek Singh | 400–700 | 16.5–18.5 | 30–34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujtaba, A.; Nabi, G.; Masood, M.; Iqbal, M.; Asfahan, H.M.; Sultan, M.; Majeed, F.; Hensel, O.; Nasirahmadi, A. Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan. Agriculture 2022, 12, 708. https://doi.org/10.3390/agriculture12050708
Mujtaba A, Nabi G, Masood M, Iqbal M, Asfahan HM, Sultan M, Majeed F, Hensel O, Nasirahmadi A. Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan. Agriculture. 2022; 12(5):708. https://doi.org/10.3390/agriculture12050708
Chicago/Turabian StyleMujtaba, Ahmad, Ghulam Nabi, Muhammad Masood, Mudassar Iqbal, Hafiz M. Asfahan, Muhammad Sultan, Faizan Majeed, Oliver Hensel, and Abozar Nasirahmadi. 2022. "Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan" Agriculture 12, no. 5: 708. https://doi.org/10.3390/agriculture12050708
APA StyleMujtaba, A., Nabi, G., Masood, M., Iqbal, M., Asfahan, H. M., Sultan, M., Majeed, F., Hensel, O., & Nasirahmadi, A. (2022). Impact of Cropping Pattern and Climatic Parameters in Lower Chenab Canal System—Case Study from Punjab Pakistan. Agriculture, 12(5), 708. https://doi.org/10.3390/agriculture12050708