High-Vigor Seeds Associated with Seed Hardness and Water Absorption Rate in Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Seed Material
2.2. Seed Size Determination
2.3. Seed Hardness Determination
2.4. Water Absorption Determination
2.5. Standard Germination Test
2.6. Salt-Stress Germination Test
2.7. Drought-Stress Germination Test
2.8. Data Analysis
3. Results
3.1. The Comparisons of Seed Vigor among Different Rice Cultivars in Different Years
3.2. The Comparisons of Seed Physical Properties among Different Cultivars in Different Years
3.3. Correlation Analysis between Seed Vigor Indicators and Seed Physical Properties
3.4. Principal Component Analysis between Seed Vigor Indicators and Seed Physical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Q.; He, A.B.; Wang, W.Q.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Res. 2018, 223, 164–170. [Google Scholar] [CrossRef]
- Yam, K.G.; Upendra, S.; Wendie, D.B.; Job, F.J.; Joaquin, S. Mitigating N2O and NO emissions from direct-seeded rice with nitrification inhibitor and urea deep placement. Rice Sci. 2020, 27, 434–444. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2013. [Google Scholar]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2015, 67, 567–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Q.; Wang, J.H.; Sun, B.Q. Advances on seed vigor physiological and genetic mechanisms. J. Integr. Agric. 2007, 6, 1060–1066. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.Q.; Liu, S.J.; Moller, I.M.; Song, S.Q. Proteome analysis of poplar seed vigor. PLoS ONE 2015, 10, e0132509. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.M.; Tang, Q.Y.; Mo, W.W. Seed filling determines seed vigour of superior and inferior spikelets during hybrid rice (Oryza sativa L.) seed production. Seed Sci. Technol. 2020, 48, 143–152. [Google Scholar] [CrossRef]
- Kapoor, N.; Arya, A.; Siddiqui, M.A.; Kumar, H.; Amir, A. Physiological and biochemical changes during seed deterioration in aged seeds of rice (Oryza sativa L.). Am. J. Plant Physiol. 2011, 6, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Dang, X.J.; Thi, T.G.T.; Dong, G.S.; Wang, H.; Edzesi, W.M.; Hong, D. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 2014, 239, 1309–1319. [Google Scholar] [CrossRef]
- Yuan, L.P. Development of hybrid rice to ensure food security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Fu, H.; Cao, D.D.; Hu, W.M.; Guan, Y.J.; Fu, Y.Y.; Fang, Y.F.; Hu, J. Studies on optimum harvest time for hybrid rice seed. J. Sci. Food Agric. 2017, 97, 1049–1372. [Google Scholar] [CrossRef]
- Wang, W.Q.; He, A.B.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. The effect of storage condition and duration on the deterioration of primed rice seeds. Front. Plant Sci. 2018, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Gu, Q.Q.; Dong, Q.; Zhang, Z.H.; Lin, C.; Hu, W.M.; Pan, R.H.; Guan, Y.J.; Hu, J. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules 2019, 24, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.I.; Tai, T. Evaluation of seedling cold tolerance in rice cultivars: A comparison of visual ratings and quantitative indicators of physiological changes. Euphytica 2011, 178, 437–447. [Google Scholar] [CrossRef]
- Snider, J.L.; Collins, G.D.; Whitaker, J.; Chapman, K.D.; Horn, P. The impact of seed size and chemical composition on seedling vigor, yield, and fiber quality of cotton in five production environments. Field Crops Res. 2016, 193, 186–195. [Google Scholar] [CrossRef]
- Varnamkhasti, M.G.; Mobli, H.; Jafari, A.; Keyhani, A.R.; Soltanabadi, M.H.; Rafiee, S.; Kheiralipour, K. Some physical properties of rough rice (Oryza sativa L.) grain. J. Cereal Sci. 2008, 47, 496–501. [Google Scholar] [CrossRef]
- Gu, R.L.; Wang, Y.Q.; Yang, L.W.; Cheng, G.L.; Wang, J.H. Seed vigor of maize hybrid ‘Jingke968′ in different development stages and its relationship to seed physical and chemical properties. J. Maize Sci. 2017, 25, 49–55. [Google Scholar]
- Ropelewska, E.; Zapotoczny, P.; Budzyński, W.; Jankowski, K.J. Discriminating power of selected physical properties of seeds of various rapeseed (Brassica napus L.) cultivars. J. Cereal Sci. 2017, 73, 62–67. [Google Scholar] [CrossRef]
- Mcdonald, M.B. The history of seed of seed vigor testing. J. Seed Technol. 1993, 17, 93–100. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy; Springer: New York, NY, USA, 2013. [Google Scholar]
- Copeland, L.O.; Mcdonald, M.B. Principles of Seed Science and Technology, 4th ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Lovato, A.; Noli, E.; Lovato, A.F.S. The relationship between three cold test temperature, accelerated ageing test and field emergence of maize seed. Seed Sci. Technol. 2005, 33, 249–253. [Google Scholar] [CrossRef]
- Marcos, F.J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Ermis, S.; Ozden, E.; Demir, I. Use of vigor tests in cucurbit rootstock cultivars. Am. J. Exp. Agric. 2015, 9, 1–6. [Google Scholar] [CrossRef]
- Preuss, C.P.; Huang, C.Y.; Louhaichi, M.; Ogbonnaya, F.C. Genetic variation in the early vigour of spring bread wheat under phosphate stress as characterized through digital charting. Field Crops Res. 2012, 127, 71–78. [Google Scholar] [CrossRef]
- Hao, Q.N.; Yang, Y.Y.; Guo, C.X.; Liu, X.F.; Chen, H.F.; Yang, Z.L.; Zhang, C.J.; Chen, L.M.; Yuan, S.L.; Chen, S.L.; et al. Evaluation of seed vigor in soybean germplasms from different eco-regions. Oil Crop Sci. 2020, 5, 22–25. [Google Scholar] [CrossRef]
- Ma, J.; Jia, J.; Wang, J.H.; Xie, Z.M.; Sun, Q. Effect of seed water absorption rate on determination of maize seed vigor. J. Maize Sci. 2015, 23, 91–95. [Google Scholar]
- Zhao, Y.L.; Hu, M.H.; Gao, Z.; Chen, X.X.; Huang, D.F. Biological mechanisms of a novel hydro-electro hybrid priming recovers potential vigor of onion seeds. Environ. Exp. Bot. 2018, 150, 260–271. [Google Scholar] [CrossRef]
- Ma, F.S.; Cholewa, E.; Mohamed, T.; Peterson, C.A.; Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 2004, 94, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Chun, A.; Lee, H.J.; Hamaker, B.R.; Janaswamy, S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa L.). J. Agric. Food Chem. 2015, 63, 3085–3093. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.M.; Bu, Y.P.; Xue, D.; Liu, Z.X.; Li, X.N.; Huang, J.; Guo, N.; Wang, H.T.; Xing, H.; et al. Genome-wide association studies of soybean seed hardness in the Chinese min core collection. Plant Mol. Biol. Rep. 2018, 36, 605–617. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, P.; Chen, C.Y.; Wang, D.; Shi, A.; Hou, A.; Ishibashi, T. Quantitative trait loci mapping of seed hardness in soybean. Crop Sci. 2008, 48, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Q.; Yue, H.W.; Li, L.; Su, C.F.; Zhang, X.W.; Liu, J.; Yu, Z.Y.; Zhao, G.W.; Song, X.Y.; Wang, J.H.; et al. A comparative analysis of the hybrid maize (Zea mays L.) seed quality in China from 2013 to 2018. Agronomy 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Zhang, Y.T.; Zhang, C.N.; Nelson, M.N.; Yuan, J.Z.; Guo, L.; Xu, Z.H. Genome-wide association mapping unravels the genetic control os seed vigor under low-temperature conditions in rapeseed (Brassica napus L.). Plants 2021, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.J.; Hu, J.; Wang, Z.F.; Zhu, S.J.; Wang, J.C.; Knapp, A. Time series regression analysis between changes in kernel size and seed vigor during developmental stage of sh2 sweet corn (Zea mays L.) seeds. Sci. Hortic. 2013, 154, 25–30. [Google Scholar] [CrossRef]
Cultivar | Propagation Location in 2014 | Cultivar | Propagation Location in 2015 | Cultivar | Propagation Location in 2016 | Cultivar | Propagation Location in 2021 |
---|---|---|---|---|---|---|---|
Tianliangyou 616 | Hubei | Mingliangyou 829 | Yunnan | YLiangyou 3218 | Hunan | Y Liangyou 900 | Zhejiang |
Guangliangxiangyou 66 | Jiangsu | Shenliangyou 5814 | Chongqing | Liangyou 688 | Fujian | Chunyou 84 | Zhejiang |
Yixiang 725 | Sichuan | Liangyou 378 | Chongqing | NLiangyou 1 | Hunan | Yongyou 12 | Zhejiang |
YLiangyou 5813 | Hunan | YLiangyou 5867 | Jiangsu | Teyou 922 | Guangxi | Yongyou 538 | Zhejiang |
Wandao 153 | Zhejiang | Benliangyou 9 | Zhejiang | Heyou 3 | Sichuan | Fengliangyou 9 | Guangdong |
YLiangyou 900 | Zhejiang | Hongxiangyou 68 | Chongqing | Gangyou 99-14 | Fujian | Xiushui 519 | Zhejiang |
Zhunliangyou 608 | Hunan | Yongyou 9 | Zhejiang | Guliduo | Sichuan | II You 7954 | Shanghai |
Chunyou 84 | Zhejiang | YLiangyou 2 | Jiangsu | Chuanxiangyou 2 | Sichuan | Shenliangyou 5814 | Chongqing |
Quanxiangyou 512 | Fujian | Neixiangyou 1 | Sichuan | Mian Liangyou 838 | Sichuan | Fengliangyou 4 | Jiangshu |
Fengliangyou 9 | Guangdong | Liangyou 1528 | Hubei | Wuyouhuazhan | Hunan | Zhongjiazao 17 | Zhejiang |
Fengliangyou 6 | Jiangsu | Fengliangyou 4 | Jiangsu | YLiangyou 9918 | Hunan | Y Liangyou 1 | Hunan |
Fengliangyouxiang 1 | Jiangsu | Guangliangyou 4 | Jiangsu | Zhongyou 465 | Hainan | Mingliangyou 829 | Yunnan |
Ning 88 | Zhejiang | Jiangza 1 | Jiangxi | Qianyou 0506 | Zhejiang | Yongyou 9 | Zhejiang |
Shaonuo 9714 | Zhejiang | Zhongjiazao 17 | Zhejiang | Xinliangyou 223 | Jiangsu | Y Liangyou 2 | Jiangsu |
Xiushui 519 | Zhejiang | Zhunliangyou 1141 | Zhejiang | Jinzao 47 | Zhejiang | Y Liangyou 3218 | Hunan |
Yongyou 538 | Zhejiang | Yongyou 366 | Guangxi | Xianghu 13 | Zhejiang | Liangyou 688 | Fujian |
Yongyou 12 | Zhejiang | Luliangyou 106 | Hunan | Xiushui 134 | Zhejiang | Y Liangyou 9918 | Zhejiang |
IIYou 7954 | Shanghai | TYou 463 | Jiangxi | Jia 58 | Zhejiang | Xiushui 134 | Hunan |
Jingliangyouhuazhan | Hainan | YLiangyou 1 | Hunan | Xiushui 09 | Zhejiang | Wuyouhuazhan | Hunan |
Longliangyou 534 | Hainan | Gangyou 725 | Sichuan | Yangeng 68 | Shenyang | Jia 58 | Zhejiang |
Year | Seed Thickness (mm) | Seed Width (mm) | Seed Length (mm) | Projection Area (mm2) | Seed Hardness (N) | Water Absorption Rate (g/h) |
---|---|---|---|---|---|---|
2014 | 2.04 ± 0.04 Aab | 3.13 ± 0.09 Aa | 9.11 ± 0.21 ABa | 19.67 ± 0.40 Aa | 74.56 ± 0.14 Aa | 0.12 ± 0.00 Aa |
2015 | 1.95 ± 0.03 Ab | 2.90 ± 0.06 Aa | 9.58 ± 0.15 Aa | 19.13 ± 0.41 ABab | 73.43 ± 0.16 Aa | 0.11 ± 0.01 ABa |
2016 | 2.07 ± 0.04 Aa | 3.00 ± 0.08 Aa | 8.33 ± 0.20 Bb | 18.08 ± 0.26 Bb | 70.33 ± 0.14 Aa | 0.09 ± 0.00 Bb |
2021 | - | - | - | - | 69.15 ± 0.15 Aa | 0.10 ± 0.01 ABab |
Cultivar | ** | ** | ** | ** | ** | ** |
Index | From 2014 to 2016 (n = 60) | In 2021 (n = 20) | ||||
---|---|---|---|---|---|---|
Germination Rate (%) | Salt-Stressed Germination Rate (%) | Drought-Stressed Germination Rate (%) | Germination Rate (%) | Salt-Stressed Germination Rate (%) | Drought-Stressed Germination Rate (%) | |
Seed hardness (N) | 0.23 | 0.38 ** | 0.41 ** | 0.52 * | 0.56 * | 0.41 |
Water absorption rate (g/h) | 0.33 ** | 0.36 ** | 0.37 ** | 0.65 ** | 0.45 * | 0.55 * |
Seed thickness (mm) | 0.13 | 0.14 | −0.16 | |||
Seed width (mm) | −0.20 | 0.09 | −0.20 | |||
Seed length (mm) | −0.21 | −0.06 | 0.27 * | |||
Projection area (mm2) | −0.23 | 0.01 | 0.01 |
Seed Physical Properties | Vectors of Germination Rate (%) | Vectors of Salt-Stressed Germination Rate (%) | Vectors of Drought-Stressed Germination Rate (%) | |||
---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | |
Seed hardness (N) | 0.56 | −0.04 | 0.58 | −0.04 | −0.41 | 0.05 |
Water absorption rate (g/h) | 0.43 | 0.06 | 0.42 | 0.01 | −0.48 | 0.07 |
Seed thickness (mm) | 0.01 | −0.01 | 0.01 | −0.01 | −0.02 | 0.01 |
Seed width (mm) | −0.01 | 0.03 | −0.01 | 0.02 | 0.02 | −0.03 |
Seed length (mm) | 0.02 | 0.50 | 0.03 | 0.38 | −0.04 | −0.30 |
Projection area (mm2) | 0.04 | 0.73 | 0.03 | 0.92 | −0.08 | −0.92 |
Contribution (%) | 91.4 | 6.8 | 90.1 | 7.6 | 89.9 | 8.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, T.; Zhu, M.; Li, C.; Li, B.; Lu, X.; Wang, J.; Jia, L.; Qi, H.; Wang, X.; et al. High-Vigor Seeds Associated with Seed Hardness and Water Absorption Rate in Rice (Oryza sativa L.). Agriculture 2022, 12, 712. https://doi.org/10.3390/agriculture12050712
Li Z, Zhang T, Zhu M, Li C, Li B, Lu X, Wang J, Jia L, Qi H, Wang X, et al. High-Vigor Seeds Associated with Seed Hardness and Water Absorption Rate in Rice (Oryza sativa L.). Agriculture. 2022; 12(5):712. https://doi.org/10.3390/agriculture12050712
Chicago/Turabian StyleLi, Zhenan, Tianyu Zhang, Minyi Zhu, Chengyong Li, Bin Li, Xiujuan Lu, Jianhua Wang, Liangquan Jia, Hengnian Qi, Xiaomin Wang, and et al. 2022. "High-Vigor Seeds Associated with Seed Hardness and Water Absorption Rate in Rice (Oryza sativa L.)" Agriculture 12, no. 5: 712. https://doi.org/10.3390/agriculture12050712
APA StyleLi, Z., Zhang, T., Zhu, M., Li, C., Li, B., Lu, X., Wang, J., Jia, L., Qi, H., Wang, X., & Zhao, G. (2022). High-Vigor Seeds Associated with Seed Hardness and Water Absorption Rate in Rice (Oryza sativa L.). Agriculture, 12(5), 712. https://doi.org/10.3390/agriculture12050712