Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Weather Conditions
2.3. Soil Samples
2.4. Experimental Design and Management
2.5. Data Collection
2.6. Data Analysis
3. Results
3.1. Weather Conditions during Growing Seasons
3.2. Grain Yield and Yield Components of Sorghum and Cowpea
3.3. Partial and Total Land Equivalent Ratio (LER) of Sorghum and Cowpea
3.4. Leaf Area Index of Sorghum and Cowpea in Binary and Sole Cultures
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, J.R.N. Overview: Importance of sorghum in Africa. In Proceedings of the AFRIPRO Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- DAFF (Department of Agriculture, Forestry and Fisheries). Sorghum: Production Guideline; DAFF: Pretoria, South Africa, 2011.
- Mpandeli, N.S. Coping with Climate Variability in Limpopo Province. Unpublished. Ph.D. Thesis, University of Witwatersrand, Johannesburg, South Africa, 2006. [Google Scholar]
- Touch, V.; Martin, R.J.; Scott, J.F.; Cowie, A.; Li, D. Climate change adaptation options in rainfed upland cropping systems in the wet tropics: A case study of smallholder farms in North-West Cambodia. J. Environ. Manag. 2016, 182, 238–246. [Google Scholar] [CrossRef]
- Rockstrom, J.; Kaumbutho, P.; Mwalley, J.; Nzabi, A.W.M.; Temesgen, M.L.; Mawenya, L.; Barron, J.; Mutua, J.; Damgaard-Larsen, S. Conservation farming strategies in East and Southern Africa: Yields and rain water productivity from on-farm action research. Soil. Till. Res. 2009, 103, 23–32. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, P.M. Climate change: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5); Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Burt, T.; Boardman, J.; Foster, I.; Howden, N. More rain, less soil: Long-term changes in rainfall intensity with climate change. Earth Surf. Process. Landf. 2015, 41, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Oseni, T.O. Evaluation of Sorghum-Cowpea Intercrop Productivity in Savanna Agro-ecology using Competition Indices. J. Agric. Sci. 2010, 2, 229–234. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.S. Traditional agriculture: A climate-smart approach for sustainable food production. Energy Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, R.; Tripathi, S.; Raghubanshi, A.S. An urgent need for sustainable thinking in agriculture: An Indian scenario. Ecol. Indic. 2016, 67, 611–622. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jørnsgaard, B.; Kinane, J.; Jensen, E.S. Grain legume–cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew. Agric. Food Sys. 2008, 23, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Till. Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Ning, C.; Qu, J.; He, L.; Yang, R.; Chen, Q.; Luo, S.; Cai, K. Improvement of yield, pest control and Si nutrition of rice by rice-water spinach intercropping. Field Crops Res. 2017, 208, 34–43. [Google Scholar] [CrossRef]
- Rippke, U.; Ramirez-Villegas, J.; Jarvis, A.; Vermeulen, S.J.; Parker, L.; Mer, F.; Derkkruger, B.; Challinor, A.J.; Howden, M. Timescales of transformational climate change adaptation in sub-Saharan African Agriculture. Nat. Clim. Change 2016, 6, 605–609. [Google Scholar] [CrossRef]
- Kephe, P.N.; Ayisi, K.K.; Petja, B.M. Challenges and opportunities in crop simulation modelling under seasonal and projected climate scenarios for crop production in South Africa. J. Agric. Food Secur. 2021, 10, 10. [Google Scholar] [CrossRef]
- Department of Agricultural Development. Soil Classification: A Taxonomic System for South Africa; Soil Classification Working Group, Soil and Irrigation Research Institute, Department of Agricultural Development: Pretoria, South Africa, 1991.
- Van Reeuwijk, L.P. (Ed.) Procedure for Soil Analysis, 6th ed.; International Soil Reference and Information Center (ISRIC)/Food and Agricultural Organization: Wageningen, The Netherlands, 2002; 120p. [Google Scholar]
- Prikner, P.; Lachnit, F.; Dvořák, F. A new soil core sampler for determination bulk density in soil profile. Plant Soil Environ. 2011, 50, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Port Melbourne, Australia, 1992. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. Microbial biomass. In Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; Anderson, J.M., Ingram, J.S.I., Eds.; CAB International: Wallingford, UK, 1993; pp. 68–70. ISBN 0-85198-821-0. [Google Scholar]
- Gasura, E.; Setimela, P.S.; Souta, C.M. Evaluation of the performance of sorghum genotypes using GGE biplot. Can. J. Plant Sci. 2015, 95, 1205–1214. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A. The Role of Introduced Sorghum and Millets in Ethiopian Agriculture. J. SAT Agric. Res. 2007, 3. [Google Scholar]
- Somu, G.; Meena, N.; Shashikumar, C.; Shivaray, N.; Druvakumar, M.; Kanavi, M.S.P. Performance of sorghum under sorghum legume intercropping system. J. Pharmacogn. Phytochem. 2020, 9, 2320–2322. [Google Scholar]
- Ghani, A.; Saeed, M.; Hussain, D.; Arshad, M.; Shafique, M.M.; Shah, S.A.S. Evaluation of different sorghum (Sorghum bicolor L. moench) varieties for grain yield and related characteristics. Sci. Lett. 2015, 3, 72–74. [Google Scholar]
- Nida, H.; Seyoum, A.; Gebreyohannes, A. Evaluation of yield performance of intermediate altitude sorghum (Sorghum bicolor (L.) Moench) genotypes using genotype x environment interaction analysis and GGE biplot in Ethiopia. Int. J. Trend Res. Dev. 2016, 3, 27–35. [Google Scholar]
- Hadebe, S.T.; Modi, A.T.; Mabhaudhi, T. Water use characteristics of hybrid, open-pollinated, and landrace sorghum genotypes under rainfed conditions. Water S. Afr. 2017, 43, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Chimonyo, V.G.P.; Modi, A.T.; Mabhaudhi, T. Simulating yield and water use of a sorghum–cowpea inter-crop using APSIM. Agric. Water Manag. 2016, 177, 317–328. [Google Scholar] [CrossRef]
- Nelson, W.C.D.; Hoffmann, M.P.; Vadez, V.; Roetter, R.P.; Whitbread, A.M. Testing pearl millet and cow-pea intercropping systems under high temperatures. J. Field Crop Res. 2018, 217, 150–166. [Google Scholar] [CrossRef] [Green Version]
- Makoi, J.H.J.R.; Chimphango, S.B.M.; Dakora, F.D. Photosynthesis, water-use efficiency and δ 13 C of five cowpea genotypes grown in mixed culture and at different densities with sorghum. Photosynthetica 2010, 48, 143–155. [Google Scholar] [CrossRef]
- Moriri, S.; Owoeye, L.G.; Mariga, I.K. Influence of component crop densities and planting patterns on maize production in dry land maize/cowpea intercropping systems. African J. Agric. Res. 2010, 5, 1200–1207. [Google Scholar]
- Masvaya, E.N.; Nyamangara, J.; Descheemaeker, K.; Giller, K.E. Is maize-cowpea intercropping a viable option for smallholder farms in the risky environments of semi-arid Southern Africa? Field Crops Res. 2017, 209, 73–87. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Tofa, A.; Ademulegun, T.; Solomon, R.; Shehu, H.; Kamai, N.; Omoigui, L. Mize-soybean intercropping for sustainable intensification of cereal-legume cropping systems in Northern Nigeria. Exp. Agric. 2017, 55, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Takim, F.O. Advantages of maize-cowpea intercropping over sole cropping through competition indices. J. Agric. Biol. Res. 2012, 1, 53–59. [Google Scholar]
- Zhang, F.; Li, L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil 2003, 248, 305–312. [Google Scholar] [CrossRef]
- Kozak, M.; Mądry, W. Note on yield component analysis. Cereal Res. Commun. 2006, 34, 933–940. [Google Scholar] [CrossRef]
- El-Aref, K.A.O.; Ahmed, H.A.; Abd-El-Hameed, W.M. Studies on intercropping peanut and cowpea on grain sorghum. Minia J. Agric. Res. Dev. 2019, 39, 175–189. [Google Scholar]
- Yin, X.; Lantinga, E.A.; Schapendonk, A.H.C.M.; Zhong, X. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann. Bot. 2003, 9, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Yesuf, M. Effect of Planting Arrangement and Population Densities of Haricot Bean on Productivity of Sorghum/Haricot Bean Additive Mixture. Master’s Thesis, Alemaya University, Haramaya, Ethiopia, 2003. [Google Scholar]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; Van Der Werf, W. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crop. Res. 2015, 184, 133–144. [Google Scholar] [CrossRef]
- Gebremichael, A.; Bekele, B.; Tadesse, B. Evaluation of the effect of sorghum-legume intercropping and its residual effect on yield of sorghum in yeki woreda, sheka zone, Ethiopia. Int. J. Agric. Res. Innov. Technol. 2020, 9, 62–66. [Google Scholar] [CrossRef]
- Musa, M.G.M.; El-Aref, K.A.O.; Bakheit, M.A.; Mahdy, A.Y. Effect of intercropping and plant distribution of sorghum with soybean on growth and yield of Sorghum bicolor. Arch. Agric. Sci. J. 2021, 4, 228–239. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Ghanbari, A.; Syahsar, B.A.; Ramrodi, M. The role of intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) on yield and soil chemical properties. Afr. J. Agric. Res. 2010, 5, 631–636. [Google Scholar]
- Reddy, R.S. Principles of Crop Production; Kalyani Publishers: New Delhi, India, 2008; pp. 45–47. [Google Scholar]
Soil Properties | Syferkuil | Ofcolaco | ||
---|---|---|---|---|
2018/19 | 2020/21 | 2018/19 | 2020/21 | |
P (mg/kg) | 22.00 | 26.89 | 53.75 | 29.3 |
K (mg/kg) | 433.00 | 276.36 | 234.00 | 158.99 |
Ca (mg/kg) | 1119.75 | 1059.61 | 917.25 | 742.73 |
Mg (mg/kg) | 558.50 | 592.455 | 152.25 | 156.54 |
Exch. Acidity (cmol/kg) | 0.03 | 0.02 | 0.04 | 0.03 |
Total cations (cmol/kg) | 11.32 | 14.35 | 6.47 | 6.65 |
Acid sat. (%) | 0.00 | 0.00 | 0.75 | 0.66 |
pH (KCL) | 6.35 | - | 6.06 | - |
Zn (mg/kg) | 1.48 | 2.77 | 5.48 | 7.75 |
Mn (mg/kg) | 17.50 | 13.64 | 48.25 | 37.98 |
Cu (mg/kg) | 4.08 | 2.89 | 5.13 | 4.48 |
org. C (%) | 0.60 | 0.63 | 1.38 | 1.37 |
N (%) | 0.05 | 0.07 | 0.05 | 0.06 |
Clay (%) | 30.00 | - | 23.25 | - |
Fine silt (%) | 7.50 | - | 8.25 | - |
Coarse silt and sand (%) | 65.50 | - | 72.25 | - |
Texture class | Sandy clay loam | - | Clay loam | - |
Syferkuil 2018/19 | |||||
---|---|---|---|---|---|
Cultivars | Head Length (cm) | Head Weight (g Head−1) | Shelled Head Weight (g Head−1) | 1000-Seed Weight (g) | Seed Weight Head (g Head−1) |
Enforcer | 27.54 a | 109.13 a | 47.01 ab | 28.17 a | 61.21 a |
NS5511 | 25.07 b | 92.39 b | 43.06 ab | 23.88 b | 49.03 b |
Avenger | 26.08 ab | 77.19 bc | 49.65 a | 21.76 c | 27.49 c |
Tittan | 25.34 b | 71.76 c | 39.93 b | 27.82 a | 31.80 c |
p ≤ 0.05 | * | * | * | * | * |
Grand mean | 26 | 87.62 | 44.91 | 25.41 | 42.38 |
LSD value | 1.79 | 16.09 | 8.93 | 1.51 | 156.3 |
Syferkuil 2020/21 | |||||
Enforcer | 28.59 a | 108.97 ab | 14.47 b | 39.41 | 90.13 |
NS5511 | 26.54 b | 112.15 a | 16.55 ab | 43.02 | 90.83 |
Avenger | 29.09 a | 98.35 b | 18.82 a | 38.61 | 82.39 |
Tittan | 28.67 a | 99.31 b | 17.45 a | 41.03 | 81.95 |
p ≤ 0.05 | * | * | * | ns | ns |
Grand mean | 28.22 | 104.7 | 16.82 | 40.52 | 86.33 |
LSD value | 1.22 | 11.6 | 2.93 | 6.39 | 12.92 |
Ofcolaco 2018/19 | |||||
---|---|---|---|---|---|
Cultivars | Head Length (cm) | Head Weight (g Head−1) | Shelled Head Weight (g Head−1) | 1000-Seed Weight (g) | Seed Weight Head (g Head−1) |
Enforcer | 25.61 ab | 28.33 c | 7.43 b | 35.69 c | 17.71 b |
NS5511 | 21.91 b | 50.04 b | 6.68 b | 45.76 a | 40.10 a |
Avenger | 30.95 a | 70.03 a | 12.91 a | 43.59 ab | 48.15 a |
Tittan | 29.59 a | 24.69 c | 8.08 b | 39.98 bc | 15.91 b |
p ≤ 0.05 | * | * | * | * | * |
Grand mean | 27.02 | 43.27 | 8.78 | 41.26 | 30.47 |
LSD value | 8.81 | 11.99 | 2.23 | 5.68 | 9.82 |
Ofcolaco 2020/21 | |||||
Enforcer | 30.1 | 28.37 b | 7.40 b | 4.09 b | 24.29 b |
NS5511 | 30.34 | 40.36 a | 9.87 b | 4.55 b | 35.80 a |
Avenger | 30.98 | 44.53 a | 14.26 a | 6.29 a | 38.24 a |
Tittan | 30.91 | 32.37 b | 9.88 b | 4.47 b | 27.91 b |
p ≤ 0.05 | ns | * | * | * | * |
Grand mean | 30.58 | 36.41 | 10.35 | 4.85 | 30.81 |
LSD value | 2.02 | 7.63 | 1.31 | 30.2 | 6.62 |
Syferkuil 2018/19 | Syferkuil 2020/21 | Ofcolaco 2018/19 | ||||
---|---|---|---|---|---|---|
Treatments | 100-seed weight | pod weight per plot | 100-seed weight | pod weight per plot | 100-seed weight | pod weight per plot |
Cowpea–Enforcer | 16.17 | 139.73 c | 15.54 b | 336.56 b | 14.71 | 364.10 b |
Cowpea–NSS5511 | 16.24 | 167.23 c | 14.51 c | 384.06 b | 14.68 | 355.97 b |
Cowpea–Avenger | 16.17 | 114.72 c | 14.65 c | 321.87 b | 14.29 | 440.97 b |
Cowpea–Titan | 16.78 | 199.10 bc | 15.53 b | 383.44 b | 14.88 | 307.22 b |
Cowpea–High Sole | 16.22 | 325.51 a | 15.54 b | 681.02 a | 14.96 | 778.94 a |
Cowpea–Low Sole | 16.39 | 285.19 ab | 16.61 a | 398.36 b | 14.74 | 715.51 a |
p ≤ 0.05 | ns | * | * | * | ns | * |
Grand mean | 16.33 | 205.25 | 15.39 | 417.55 | 14.71 | 493.79 |
LSD value | 0.86 | 79.31 | 0.69 | 99.31 | 1.05 | 170.16 |
Treatments | Syferkuil 2018/19 | Syferkuil 2020/21 | Ofcolaco 2018/19 |
---|---|---|---|
Enforcer + Cowpea-low | 1.7 | 1.3 | 1.7 |
Enforcer + Cowpea-high | 1.3 | 1.4 | 1.2 |
NSS5511 + Cowpea-low | 1.5 | 1.6 | 1.9 |
NSS5511 + Cowpea-high | 1.7 | 1.6 | 1.3 |
Avenger + Cowpea-low | 1.6 | 1.5 | 1.6 |
Avenger + Cowpea-high | 1.7 | 1.7 | 1.5 |
Titan + Cowpea-low | 1.6 | 1.8 | 1.5 |
Titan + Cowpea-high | 1.5 | 1.8 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogale, T.E.; Ayisi, K.K.; Munjonji, L.; Kifle, Y.G. Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province. Agriculture 2022, 12, 733. https://doi.org/10.3390/agriculture12050733
Mogale TE, Ayisi KK, Munjonji L, Kifle YG. Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province. Agriculture. 2022; 12(5):733. https://doi.org/10.3390/agriculture12050733
Chicago/Turabian StyleMogale, Tlou E., Kingsley K. Ayisi, Lawrence Munjonji, and Yehenew G. Kifle. 2022. "Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province" Agriculture 12, no. 5: 733. https://doi.org/10.3390/agriculture12050733
APA StyleMogale, T. E., Ayisi, K. K., Munjonji, L., & Kifle, Y. G. (2022). Yield Responses of Grain Sorghum and Cowpea in Binary and Sole Cultures under No-Tillage Conditions in Limpopo Province. Agriculture, 12(5), 733. https://doi.org/10.3390/agriculture12050733