Interactions between Social Hierarchy and Some Udder Morphometric Traits upon Colostrum and Milk Physicochemical Characteristics in Crossbred Dairy Goats
Abstract
:1. Introduction
2. Material and Methods
2.1. General
2.2. Location, Environment, and General Management during the Reproductive Transition Pretrial Period
2.3. Experimental Period: Defining the Social Rank among Female Goats
2.4. Measurement of Udder Morphometric Variables According to the Social Rank Status
2.4.1. Udder Morphometric Quantification
2.4.2. Colostrum and Milk Physicochemical Quantifications
2.5. Statistical Analyses
3. Results
3.1. Effect of Social Rank and Time upon Udder Morphometric Components in Crossbred Dairy Goats
3.2. Effect of the Interaction Social Rank × Time upon Udder Morphometric Components in Crossbred Dairy Goats
3.3. Effect of Social Rank upon Colostrum Quality Composition in Crossbred Dairy Goats
3.4. Effect of Social Rank and Time upon Milk Quality Composition in Crossbred Dairy Goats
3.5. Effect of the Interaction Social Rank × Time upon Udder the Milk Components in Crossbred Dairy Goats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitcher, B.J.; Briefer, E.F.; Baciadonna, L.; McElligott, A.G. Cross-modal recognition of familiar conspecifics in goats. R. Soc. Open Sci. 2017, 4, 160346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napolitano, F.; Serrapica, M.; Braghieri, A.; Claps, S.; Serrapica, F.; De Rosa, G. Can we monitor adaptation of juvenile goats to a new social environment through continuous qualitative behaviour assessment? PLoS ONE 2018, 13, e0200165. [Google Scholar] [CrossRef] [PubMed]
- Zobel, G.; Neave, H.W.; Webster, J. Understanding natural behavior to improve dairy goat (Capra hircus) management systems. Transl. Anim. Sci. 2018, 3, 212–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda-de La Lama, G.C.; Mattiello, S. The importance of social behaviour for goat welfare in livestock farming. Small Rumin. Res. 2010, 90, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, L.; Arvizu, R.R.; Luna, J.A.; Zarco, L.A. Social ranking and plasma progesterone levels in goats. Small Rumin. Res. 2010, 90, 161–164. [Google Scholar] [CrossRef]
- Ungerfeld, R. Sexual behavior of medium-ranked rams toward non-estrual ewes is stimulated by the presence of low-ranked rams. J. Vet. Behav. 2012, 7, 84–87. [Google Scholar] [CrossRef]
- Ungerfeld, R.; Lacuesta, L. Social rank during pre-pubertal development and reproductive performance of adult rams. Anim. Reprod. Sci. 2010, 121, 101–105. [Google Scholar] [CrossRef]
- Barroso, F.G.; Alados, C.L.; Boza, J. Social hierarchy in the domestic goat: Effect on food habits and production. Appl. Anim. Behav. Sci. 2000, 69, 35–53. [Google Scholar] [CrossRef]
- Bica, G.S.; Machado Filho, P.; Carlos, L.; Teixeira, D.L.; de Sousa, K.T.; Hötzel, M.J. Time of grain supplementation and social dominance modify feeding behavior of heifers in rotational grazing systems. Front. Vet. Sci. 2020, 7, 61. [Google Scholar] [CrossRef]
- Di Virgilio, A.; Morales, J.M. Towards evenly distributed grazing patterns: Including social context in sheep management strategies. PeerJ 2016, 4, e2152. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.N.; Al-Marashdeh, O.; Bryant, R.H.; Edwards, G.R. Relationship between social dominance and milk production of dairy cows grazing pasture. Proc. N. Z. Soc. Anim. Prod. 2016, 76, 69–72. [Google Scholar]
- Zuñiga-Garcia, S.; Meza-Herrera, C.A.; Mendoza-Cortina, A.; Otal, J.; Perez-Marín, C.; Lopez-Flores, N.M.; Carrillo, E.; Calderon-Leyva, G.; Gutierrez-Guzman, U.N.; Véliz-Deras, F.G. Effect of social rank upon estrus induction and some reproductive outcomes in anestrus goats treated with progesterone + eCG. Animals 2020, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
- Zuñiga-Garcia, S.; Meza-Herrera, C.A.; Mendoza-Cortina, A.; Perez-Marin, C.; Lopez-Flores, N.M.; Guillén-Muñoz, J.M.; Arellano-Rodriguez, G.; Gutierrez-Guzman, U.N.; Bustamante-Andrade, J.A.; Luna-Orozco, J.R.; et al. Does Size Matters? Relationships among Social Dominance and Some Morphometric Traits upon Out-of-Season Reproductive Outcomes in Anestrus Dairy Goats Treated with P4+ eCG. Biology 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Estevez, I.; Andersen, I.L.; Nævdal, E. Group size, density and social dynamics in farm animals. Appl. Anim. Behav. Sci. 2007, 103, 185–204. [Google Scholar] [CrossRef]
- Vas, J.; Andersen, I.L. Density-Dependent Spacing Behaviour and Activity Budget in Pregnant, Domestic Goats (Capra hircus). PLoS ONE 2015, 10, e0144583. [Google Scholar] [CrossRef] [Green Version]
- Manousidis, T.; Kyriazopoulos, A.P.; Parissi, Z.M.; Abraham, E.M.; Korakis, G.; Abas, Z. Grazing behavior, forage selection and diet composition of goats in a Mediterranean woody rangeland. Small Rumin. Res. 2016, 145, 142–153. [Google Scholar] [CrossRef]
- Neave, H.W.; von Keyserlingk, M.A.; Weary, D.M.; Zobel, G. Feed intake and behavior of dairy goats when offered an elevated feed bunk. J. Dairy Sci. 2018, 101, 3303–3310. [Google Scholar] [CrossRef] [Green Version]
- Hartley, A.; Shrader, A.M.; Chamaillé-Jammes, S. Can intrinsic foraging efficiency explain dominance status? A test with functional response experiments. Oecologia 2019, 189, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Escareño, L.; Wurzinger, M.; Iñiguez, L.; Soelkner, J.; Salinas, H.; Meza-Herrera, C.A. Dairy goat production systems in dry areas: Status-quo, perspectives and challenges. Trop. Anim. Health Prod. 2013, 45, 17–34. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Statistics Database. Available online: http://www.fao.org/faostat/en/#data (accessed on 27 August 2021).
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Ramirez-Flores, J.J.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santiago, M.A.; Veliz-Deras, F.G. Economic evaluation of the environmental impact of a dairy cattle intensive production cluster under arid lands conditions. Animal 2019, 13, 2379–2387. [Google Scholar] [CrossRef]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santos, A.; Veliz-Deras, F.G. To beef or not to beef: Unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region. J. Clean. Prod. 2019, 231, 1027–1035. [Google Scholar] [CrossRef]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Macias-Cruz, U.; Veliz-Deras, F.G. Not all ruminants were created equal: Environmental and socio-economic sustainability of goats under a marginal-extensive production system. J. Clean. Prod. 2020, 255, 120237. [Google Scholar] [CrossRef]
- Clark, S.; García, M.B.M. A 100-year review: Advances in goat milk research. J. Dairy Sci. 2017, 100, 10026–10044. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R. Triennial lactation symposium/BOLFA: Mammary growth during pregnancy and lactation and its relationship with milk yield. J. Anim. Sci. 2017, 95, 5675–5688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Najera, M.J.; Cuevas-Reyes, V.; Vazquez-García, J.M.; Beltran-Lopez, S.; Meza-Herrera, C.A.; Mellado, M.; Negrete-Sanchez, L.O.; Rivas-Jacobo, M.A.; Rosales-Nieto, C.A. Milk yield and composition of mixed-breed goats on rangeland during the dry season and the effect on the growth of their progeny. Biology 2021, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Isidro-Requejo, L.M.; Meza-Herrera, C.A.; Pastor-López, F.J.; Maldonado, J.A.; Salinas-González, H. Physicochemical characterization of goat milk produced in the Comarca Lagunera, Mexico. Anim. Sci. J. 2019, 90, 563–573. [Google Scholar] [CrossRef] [PubMed]
- American Dairy Science Association (ADSA). Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. American Society of Animal Science, and the Poultry Science Association, 4th ed.; ADSA: Champaign, IL, USA, 2020; 227p, ISBN 978-1-7362930-0-3. Available online: https://www.asas.org/docs/default-source/default-document-library/agguide_4th.pdf?sfvrsn=56b44ed1_2 (accessed on 2 September 2021).
- National Academy of Medicine (NAM). Guide for the Care and Use of Laboratory Animals, 1st ed.; National Academy of Medicine-Mexico and the Association for Assessment and Accreditation of Laboratory Animal Care International: Mexico City, Mexico, 2010. [Google Scholar]
- Instituto Nacional de Estadística y Geografía—National Institute of Statistic and Geography (INEGI). México En Cifras. 2021. Available online: https://www.inegi.org.mx/app/areasgeograficas/ (accessed on 2 September 2021).
- Bustamante-Andrade, J.A.; Meza-Herrera, C.A.; Rodríguez-Martínez, R.; Santos-Jimenez, Z.; Ángel-García, O.; Gaytán-Aleman, L.R.; Gutierrez-Guzman, U.N.; Esquivel-Romo, A.; Véliz-Deras, F.G. Luteogenesis and embryo implantation are enhanced by exogenous Hcg in goats subjected to an out-of-season fixed-time artificial insemination protocol. Biology 2021, 10, 429. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [CrossRef]
- Alvarez, L.; Martin, G.B.; Galindo, F.; Zarco, L.A. Social dominance of female goats affects their response to the male effect. Appl. Anim. Behav. Sci. 2003, 84, 119–126. [Google Scholar] [CrossRef]
- Andersen, I.L.; Bøe, K.E. Resting pattern and social interactions in goats—The impact of size and organisation of lying space. Appl. Anim. Behav. Sci. 2007, 108, 89–103. [Google Scholar] [CrossRef]
- Fournier, F.; Festa-Bianchet, M. Social dominance in adult female mountain goats. Anim. Behav. 1995, 49, 1449–1459. [Google Scholar] [CrossRef]
- Côté, S. Dominance hierarchies in female mountain goats: Stability, aggressiveness and determinants of rank. Behaviour 2000, 137, 1541–1566. [Google Scholar] [CrossRef]
- Ungerfeld, R.; Correa, O. Social dominance of female dairy goats influences the dynamics of gastrointestinal parasite eggs. Appl. Anim. Behav. Sci. 2007, 105, 249–253. [Google Scholar] [CrossRef]
- Alvarez, L.; Zarco, L.; Galindo, F.; Blache, D.; Martin, G.B. Social rank and response to the “male effect” in the Australian Cashmere goat. Anim. Reprod. Sci. 2007, 102, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.; Ramos, A.L.; Zarco, L. The ovulatory and LH responses to the male effect in dominant and subordinate goats. Small Rumin. Res. 2009, 83, 29–33. [Google Scholar] [CrossRef]
- Côté, S.D.; Festa-Bianchet, M. Reproductive success in female mountain goats: The influence of age and social rank. Anim. Behav. 2001, 62, 173–181. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Gómez-Brunet, A.; Toledano-Díaz, A.; Pulido-Pastor, A.; López-Sebastián, A. Social dominance and breeding activity in Spanish ibex (Capra pyrenaica) maintained in captivity. Reprod. Fertil. Dev. 2007, 19, 436–442. [Google Scholar] [CrossRef]
- Jena, S.; Malik, D.S.; Kaswan, S.; Sharma, A.; Kashyap, N.; Singh, U. Relationship of udder morphometry with milk yield and body condition traits in Beetal goats. Indian J. Anim. Sci. 2019, 89, 204–208. [Google Scholar]
- Keskin, S.; Kor, A.; Karaca, S. Use of factor analysis scores in multiple linear regression model for determining relationships between milk yield and some udder traits in Goats. J. Appl. Anim. Res. 2007, 31, 185–188. [Google Scholar] [CrossRef]
- Susilorini, T.E.; Maylinda, S.; Surjowardojo, P. Importance of body condition score for milk production traits in Peranakan Etawah goats. J. Biol. Agric. Health 2014, 4, 151–157. [Google Scholar]
- Abisoye, F.O.; Adedibu, I.I.; Kabir, M.; Barje, P.P.; Ugbojah, O.G. Evaluation of Udder and Teat Traits in Relation to Somatic cell Count in Sokoto Gudali and White Fulani cows in Nigeria. Niger. J. Anim. Sci. Technol. 2021, 4, 102–110. [Google Scholar]
- Assan, N. Morphology and its relationship with reproduction and milk production in goat and sheep. Sci. J. Zool. 2020, 9, 123–137. [Google Scholar] [CrossRef]
- Erduran, H.; Dag, B. Determination of factors affecting milk yield, composition and udder morphometry of Hair and cross-bred dairy goats in a semi-intensive system. J. Dairy Res. 2021, 88, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Margatho, G.; Quintas, H.; Rodríguez-Estévez, V.; Simões, J. Udder morphometry and its relationship with intramammary infections and somatic cell count in serrana goats. Animals 2020, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, S.; Singh, N.; Sharma, V.; Pal, R.S. Impact of udder and teat morphometry on udder health in Tharparkar cows under climatic condition of hot arid region of Thar Desert. Trop. Anim. Health Prod. 2016, 48, 1647–1652. [Google Scholar] [CrossRef] [PubMed]
- Oudshoorn, H.M.; Paibomesai, M.A.; Cant, J.P.; Osborne, V.R. Nutritional strategies used on dairy goat farms in Ontario. Prof. Anim. Sci. 2016, 32, 484–494. [Google Scholar] [CrossRef]
- Argüello, A.; Castro, N.; Zamorano, M.J.; Castroalonso, A.; Capote, J. Passive transfer of immunity in kid goats fed refrigerated and frozen goat colostrum and commercial sheep colostrum. Small Rumin. Res. 2004, 54, 237–241. [Google Scholar] [CrossRef]
- Castro, N.; Capote, J.; Alvarez, S.; Argüello, A. Effects of lyophilized colostrum and different colostrum feeding regimens on passive transfer of immunoglobulin G in Majorera goat kids. J. Dairy Sci. 2005, 88, 3650–3654. [Google Scholar] [CrossRef]
- Stonos, N.; Wootton, S.K.; Quinton, M.; Karrow, N. Seroprevalence of small ruminant lentivirus infection in Ontario goat herds. Small Rumin. Res. 2013, 114, 284–288. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; Van Metre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Puppel, K.; Gołębiewski, M.; Konopka, K.; Kunowska-Slósarz, M.; Slósarz, J.; Grodkowski, G.; Przysucha, T.; Balcerak, M.; Madras-Majewska, B.; Sakowski, T. Relationship between the quality of colostrum and the formation of microflora in the digestive tract of calves. Animals 2020, 10, 1293. [Google Scholar] [CrossRef]
- Castro, N.; Gómez-González, L.A.; Earley, B.; Argüello, A. Use of clinic refractometer at farm as a tool to estimate the IgG content in goat colostrum. J. Appl. Anim. Res. 2018, 46, 1505–1508. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Immunoglobulin G content and colostrum composition of different goat and sheep breeds in Switzerland and Germany. J. Dairy Sci. 2019, 102, 5542–5549. [Google Scholar] [CrossRef] [PubMed]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Comparative estimation of colostrum quality by Brix refractometry in bovine, caprine, and ovine colostrum. J. Dairy Sci. 2021, 104, 2438–2444. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.R.; Fagundes, G.B.; do Nascimento, D.M.; Faustino, L.R.; da Silva, C.M.G.; Dias, F.E.F.; Pereira, S.A.; Arrivabene, M.; Cavalcante, T.V. Use of digital Brix refractometer to estimate total protein levels in Santa Inês ewes’ colostrum and lambs’ blood serum. Small Rumin. Res. 2020, 182, 78–80. [Google Scholar] [CrossRef]
- Schettino-Bermúdez, B.S.; Gutiérrez-Tolentino, R.; Vega y León, S.; Escobar-Medina, A.; Pérez-González, J.J.; González-Ronquillo, M. Composición láctea y perfil de ácidos grasos en leche de cabra de Guanajuato, México. Rev. Salud Anim. 2018, 40, e01. [Google Scholar]
- Vieitez, I.; Irigaray, B.; Callejas, N.; González, V.; Gimenez, S.; Arechavaleta, A.; Grompone, M.; Gámbaro, A. Composition of fatty acids and triglycerides in goat cheeses and study of the triglyceride composition of goat milk and cow milk blends. J. Food Compos. Anal. 2016, 48, 95–101. [Google Scholar] [CrossRef]
- Lôbo, A.M.B.O.; Lôbo, R.N.B.; Facó, O.; Souza, V.; Alves, A.A.C.; Costa, A.C.; Albuquerque, M.A.M. Characterization of milk production and composition of four exotic goat breeds in Brazil. Small Rumin. Res. 2017, 153, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Salvador, A.; Martínez, G.; Alvarado, C.; Hahn, M.; Pariacote, F.; Vazquez-Armijo, J.F. Características físico químicas y composición de la leche de cabras mestizas canarias en condiciones tropicales. Rev. Fac. Cienc. Vet. 2016, 57, 53–60. [Google Scholar]
- Di Grigoli, A.; Di Trana, A.; Alabiso, A.; Maniaci, G.; Giorgio, D.; Bonanno, A. Effects of grazing on the behaviour, oxidative and immune status, and production of organic dairy cows. Animals 2019, 9, 371. [Google Scholar] [CrossRef] [Green Version]
Social Rank | |||
---|---|---|---|
LSR 1 | HSR 1 | p-Value | |
LW (kg) | 48.20 ± 1.80 b | 54.60 ± 1.63 a | 0.017 |
BCS (units) | 2.27 ± 0.14 a | 2.27 ± 0.12 a | 0.979 |
GLUC (mg mL−1) | 40.88 ± 2.37 a | 39.18 ± 2.15 a | 0.601 |
Variables (cm) | Social Rank (SR) | Time (T) | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LSR | HSR | 20 Oct | 30 Oct | 6 Nov | 13 Nov | 20 Nov | 27 Nov | 4 Dec | s.e. 2 | SR | T | |
UDPER | 37.7 ab | 38.5 ab | 27.9 c | 35.3 b | 39.5 ab | 41.8 ab | 39.9 ab | 43.6 a | 38.8 ab | 2.4 | 0.68 | 0.04 |
UDDIA | 9.5 a | 10.8 a | 9.7 a | 14.1 a | 9.8 a | 9.6 a | 9.2 a | 10.0 a | 8.6 a | 1.8 | 0.34 | 0.42 |
LTPER | 7.5 a | 7.6 a | 8.0 a | 7.5 a | 7.8 a | 7.3 a | 8.7 a | 6.8 a | 6.7 a | 1.2 | 0.89 | 0.86 |
RTPER | 7.6 a | 7.6 a | 8.2 a | 7.2 a | 8.3 a | 7.4 a | 8.7 a | 6.9 a | 6.3 a | 1.2 | 0.97 | 0.89 |
LTLT | 5.6 ab | 5.7 ab | 5.7 ab | 7.4 a | 5.8 ab | 5.9 ab | 6.3 ab | 4.4 b | 4.1 b | 0.8 | 0.83 | 0.04 |
RTLT | 5.8 abc | 5.7 abc | 5.7 ab | 6.9 a | 6.5 ab | 6.6 ab | 6.4 abc | 4.3 bc | 3.9 c | 0.8 | 0.98 | 0.04 |
LTDIA | 2.0 ab | 2.0 ab | 2.2 ab | 3.0 a | 1.9 bc | 1.8 bc | 2.5 ab | 1.6 bc | 1.1 c | 0.3 | 0.85 | 0.04 |
RTDIA | 2.0 ab | 2.0 ab | 2.4 ab | 2.9 a | 2.1 ab | 1.8 bc | 2.5 ab | 1.6 bc | 1.1 c | 0.3 | 0.99 | 0.04 |
MSL | 19.5 abc | 20.1 abc | 17.2 bc | 16.6 c | 21.8 ab | 23.0 a | 20.8 abc | 20.1 abc | 19.3 abc | 1.7 | 0.64 | 0.03 |
Variables (cm) | 20 Oct | 30 Oct | 6 Nov | 13 Nov | 20 Nov | 27 Nov | 4 Dec | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSR | HSR | LSR | HSR | LSR | HSR | LSR | HSR | LSR | HSR | LSR | HSR | LRS | HSR | s.e. 2 | SR × T | |
UDPER | 27.7 d | 28.1 d | 34.3 c | 36.1 bc | 39.2 a–c | 39.8 a–c | 41.7 ab | 41.9 ab | 39.7 a–c | 41.5 a–c | 41.3 b | 45.5 a | 39.5 a–c | 43.2 a–c | 2.2 | 0.001 |
UDDIA | 9.4 a | 10.2 a | 9.4 a | 9.4 a | 9.8 a | 9.8 a | 10.0 a | 9.5 a | 9.3 a | 9.1 a | 9.7 a | 10.4 a | 8.6 a | 8.8 a | 0.6 | 0.614 |
LTPER | 8.1 ab | 8.0 ab | 7.0 b | 7.9 ab | 7.9 ab | 7.8 ab | 7.0 b | 7.6 ab | 7.9 ab | 9.4 a | 7.2 ab | 6.4 b | 7.3 ab | 6.2 b | 0.8 | 0.411 |
RTPER | 8.4 ab | 8.1 ab | 6.9 a–c | 7.4 a–c | 8.0 a–c | 8.6 ab | 6.8 a–c | 7.9 a–c | 8.3 ab | 9.1 a | 7.5 a–c | 6.5 bc | 7.2 a–c | 5.6 c | 0.9 | 0.248 |
LTLT | 5.7 b–e | 5.8 b–d | 6.8 b | 8.0 a | 5.8 b–d | 5.7 b–d | 5.9 bc | 5.9 bc | 5.7 b–e | 6.9 a | 5.1 b–e | 3.9 e | 4.2 c–e | 4.0 de | 0.6 | 0.001 |
RTLT | 5.8 a–c | 5.6 a–d | 6.7 a | 7.0 a | 6.5 ab | 6.4 ab | 6.8 a | 6.5 ab | 5.6 b–d | 7.0 a | 4.7 a–d | 3.9 d | 4.1 cd | 3.8 d | 0.7 | 0.001 |
LTDIA | 2.2 bc | 2.2 bc | 3.1 a | 2.9 a | 1.8 b–d | 1.9 bcd | 1.5 c–e | 1.9 b–d | 2.5 ab | 2.5 ab | 1.7 cd | 1.6 c–e | 1.0 e | 1.2 de | 0.2 | 0.001 |
RTDIA | 2.4 b–d | 2.4 b–d | 3.1 a | 2.8 ab | 1.9 c–f | 2.2 b–e | 1.6 e–g | 2.0 c–f | 2.5 abc | 2.4 a–c | 1.7 d–g | 1.5 fg | 1.1 g | 1.1 g | 0.2 | 0.001 |
MSL | 17.1 e–g | 17.3 d–g | 16.7 fg | 16.5 g | 21.0 a–d | 22.5 ab | 23.5 a | 22.7 ab | 20.3 a–f | 21.2 a–c | 18.4 c–e | 20.8 ab | 18.3 c–g | 20.7 ab | 1.3 | 0.005 |
Variables, (%) | Social Rank | ||
---|---|---|---|
LSR | HSR | p-Value | |
FATCA | 7.2 ± 2.2 | 7.6 ± 2.0 | 0.892 |
PROCA | 10.6 ± 1.7 | 10.0 ± 1.6 | 0.804 |
LACCA | 3.3 ± 0.3 | 2.6 ± 0.3 | 0.184 |
NFSCA | 12.0 ± 2.4 | 15.6 ± 2.2 | 0.300 |
FPCA | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.284 |
TSCA | 23.1 ± 3.0 | 22.3 ± 2.7 | 0.838 |
Variables | Social Rank | Time | p-Value | |||
---|---|---|---|---|---|---|
LSR | HSR | 1 | 2 | 3 | ||
FATMK, % | 3.5 ± 0.5 a | 4.2 ± 0.5 a | 4.6 ± 0.6 a | 3.2 ± 0.6 a | 3.8 ± 0.7 a | 0.380 |
PROMK, % | 3.2 ± 0.1 ab | 3.4 ± 0.1 a | 3.8 ± 0.2 a | 3.3 ± 0.2 ab | 2.7 ± 0.2 b | 0.470 |
LACMK, % | 4.1 ± 0.1 a | 4.2 ± 0.1 a | 4.3 ± 0.1 a | 4.0 ± 0.1 a | 4.2 ± 0.1 a | 0.491 |
NFSMK, % | 7.8 ± 0.3 ab | 8.3 ± 0.3 a | 8.8 ± 0.3 a | 8.1 ± 0.3 ab | 7.3 ± 0.4 b | 0.324 |
FPMK, °C | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.01 a | 0.4 ± 0.01 a | 0.4 ± 0.02 a | 0.742 |
TSMK, % | 11.9 ± 0.7 a | 12.8 ± 0.8 a | 13.6 ± 0.9 a | 11.7 ± 0.9 a | 11.7 ± 1.0 a | 0.461 |
Variables | Time 1 | Time 2 | Time 3 | p-Value | |||
---|---|---|---|---|---|---|---|
LSR | HSR | LSR | HSR | LSR | HSR | ||
FATMK (%) | 4.6 ± 0.6 ab | 4.7 ± 0.6 a | 2.7 ± 0.4 b | 3.7 ± 0.4 a | 3.3 ± 0.6 ab | 4.4 ± 0.7 ab | 0.049 |
PROMK (%) | 3.8 ± 0.2 a | 3.8 ± 0.2 a | 3.1 ± 0.2 bc | 3.5 ± 0.1 a | 2.6 ± 0.1 c | 2.9 ± 0.1 b | 0.002 |
LACMK (%) | 4.5 ± 0.2 a | 4.2 ± 0.2 ab | 3.7 ± 0.2 b | 4.3 ± 0.2 a | 4.2 ± 0.2 ab | 4.2 ± 0.2 ab | 0.165 |
NFSMK (%) | 9.0 ± 0.4 a | 8.7 ± 0.4 ab | 7.5 ± 0.4 cd | 8.6 ± 0.4 ab | 7.1 ± 0.3 d | 7.7 ± 03 bc | 0.013 |
FPMK (°C) | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.4 ± 0.01 a | 0.4 ± 0.0 a | 0.4 ± 0.0 a | 0.941 |
TSMK (%) | 13.7 ± 0.9 a | 13.6 ± 0.8 ab | 11.0 ± 0.9 b | 12.4 ± 0.8 ab | 11.0 ± 0.9 b | 12.3 ± 1.0 ab | 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Zuñiga, M.S.; Meza-Herrera, C.A.; Calderón-Leyva, G.; López-Villalobos, N.; Navarrete-Molina, C.; Bustamante-Andrade, J.A.; Sifuentes-Lamónt, P.I.; Flores-Salas, J.M.; Véliz-Deras, F.G. Interactions between Social Hierarchy and Some Udder Morphometric Traits upon Colostrum and Milk Physicochemical Characteristics in Crossbred Dairy Goats. Agriculture 2022, 12, 734. https://doi.org/10.3390/agriculture12050734
Castillo-Zuñiga MS, Meza-Herrera CA, Calderón-Leyva G, López-Villalobos N, Navarrete-Molina C, Bustamante-Andrade JA, Sifuentes-Lamónt PI, Flores-Salas JM, Véliz-Deras FG. Interactions between Social Hierarchy and Some Udder Morphometric Traits upon Colostrum and Milk Physicochemical Characteristics in Crossbred Dairy Goats. Agriculture. 2022; 12(5):734. https://doi.org/10.3390/agriculture12050734
Chicago/Turabian StyleCastillo-Zuñiga, Ma. Silvia, César A. Meza-Herrera, Guadalupe Calderón-Leyva, Nicolas López-Villalobos, Cayetano Navarrete-Molina, Jorge A. Bustamante-Andrade, Pablo I. Sifuentes-Lamónt, Jessica M. Flores-Salas, and Francisco G. Véliz-Deras. 2022. "Interactions between Social Hierarchy and Some Udder Morphometric Traits upon Colostrum and Milk Physicochemical Characteristics in Crossbred Dairy Goats" Agriculture 12, no. 5: 734. https://doi.org/10.3390/agriculture12050734
APA StyleCastillo-Zuñiga, M. S., Meza-Herrera, C. A., Calderón-Leyva, G., López-Villalobos, N., Navarrete-Molina, C., Bustamante-Andrade, J. A., Sifuentes-Lamónt, P. I., Flores-Salas, J. M., & Véliz-Deras, F. G. (2022). Interactions between Social Hierarchy and Some Udder Morphometric Traits upon Colostrum and Milk Physicochemical Characteristics in Crossbred Dairy Goats. Agriculture, 12(5), 734. https://doi.org/10.3390/agriculture12050734